Suppr超能文献

代谢条形码监测分析:使用共同提取的环境DNA和RNA数据评估海上石油生产对底栖生物群落影响的利弊。

Metabarcoding monitoring analysis: the pros and cons of using co-extracted environmental DNA and RNA data to assess offshore oil production impacts on benthic communities.

作者信息

Laroche Olivier, Wood Susanna A, Tremblay Louis A, Lear Gavin, Ellis Joanne I, Pochon Xavier

机构信息

School of Biological Sciences, University of Auckland, Auckland, New Zealand.

Environmental Technologies, Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand.

出版信息

PeerJ. 2017 May 17;5:e3347. doi: 10.7717/peerj.3347. eCollection 2017.

Abstract

Sequencing environmental DNA (eDNA) is increasingly being used as an alternative to traditional morphological-based identification to characterize biological assemblages and monitor anthropogenic impacts in marine environments. Most studies only assess eDNA which, compared to eRNA, can persist longer in the environment after cell death. Therefore, eRNA may provide a more immediate census of the environment due to its relatively weaker stability, leading some researchers to advocate for the use of eRNA as an additional, or perhaps superior proxy for portraying ecological changes. A variety of pre-treatment techniques for screening eDNA and eRNA derived operational taxonomic units (OTUs) have been employed prior to statistical analyses, including removing singleton taxa (i.e., OTUs found only once) and discarding those not present in both eDNA and eRNA datasets. In this study, we used bacterial (16S ribosomal RNA gene) and eukaryotic (18S ribosomal RNA gene) eDNA- and eRNA-derived data from benthic communities collected at increasing distances along a transect from an oil production platform (Taranaki, New Zealand). Macro-infauna (visual classification of benthic invertebrates) and physico-chemical data were analyzed in parallel. We tested the effect of removing singleton taxa, and removing taxa not present in the eDNA and eRNA libraries from the same environmental sample (trimmed by shared OTUs), by comparing the impact of the oil production platform on alpha- and beta-diversity of the eDNA/eRNA-based biological assemblages, and by correlating these to the morphologically identified macro-faunal communities and the physico-chemical data. When trimmed by singletons, presence/absence information from eRNA data represented the best proxy to detect changes on species diversity for both bacteria and eukaryotes. However, assessment of quantitative beta-diversity from read abundance information of bacteria eRNA did not, contrary to eDNA, reveal any impact from the oil production activity. Overall, the data appeared more robust when trimmed by shared OTUs, showing a greater effect of the platform on alpha- and beta-diversity. Trimming by shared OTUs likely removes taxa derived from legacy DNA and technical artefacts introduced through reverse transcriptase, polymerase-chain-reaction and sequencing. Findings from our scoping study suggest that metabarcoding-based biomonitoring surveys should, if funds, time and expertise allow, be assessed using both eDNA and eRNA products.

摘要

对环境DNA(eDNA)进行测序越来越多地被用作传统形态学鉴定的替代方法,以表征生物群落并监测海洋环境中的人为影响。大多数研究仅评估eDNA,与eRNA相比,eDNA在细胞死亡后能在环境中持续更长时间。因此,由于eRNA相对较弱的稳定性,它可能提供对环境更即时的普查,这使得一些研究人员主张使用eRNA作为描绘生态变化的补充,甚至可能是更好的替代指标。在进行统计分析之前,已经采用了多种预处理技术来筛选源自eDNA和eRNA的可操作分类单元(OTU),包括去除单例分类群(即仅发现一次的OTU)以及舍弃那些在eDNA和eRNA数据集中都不存在的分类群。在本研究中,我们使用了从新西兰塔拉纳基一个石油生产平台沿线不同距离采集的底栖生物群落中获得的细菌(16S核糖体RNA基因)和真核生物(18S核糖体RNA基因)的eDNA和eRNA衍生数据。同时分析了大型底栖动物(底栖无脊椎动物的视觉分类)和理化数据。我们通过比较石油生产平台对基于eDNA/eRNA的生物群落的α-多样性和β-多样性的影响,并将这些与形态学鉴定的大型动物群落和理化数据进行关联,测试了去除单例分类群以及从同一环境样本中去除eDNA和eRNA文库中不存在的分类群(通过共享OTU进行修剪)的效果。当通过单例进行修剪时,eRNA数据中的存在/缺失信息是检测细菌和真核生物物种多样性变化的最佳替代指标。然而,与eDNA相反,根据细菌eRNA的读数丰度信息评估定量β-多样性并未揭示石油生产活动的任何影响。总体而言,当通过共享OTU进行修剪时,数据似乎更可靠,显示出平台对α-多样性和β-多样性有更大影响。通过共享OTU进行修剪可能会去除源自遗留DNA以及通过逆转录酶、聚合酶链反应和测序引入的技术假象的分类群。我们的范围界定研究结果表明,如果资金、时间和专业知识允许,基于元条形码的生物监测调查应同时使用eDNA和eRNA产物进行评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/226b/5437860/afc217cbb575/peerj-05-3347-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验