Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
Nanoscale. 2017 Jun 8;9(22):7570-7576. doi: 10.1039/c7nr02918g.
Metal nanoparticles (NPs) are of interest for applications in catalysis, electronics, chemical sensing, and more. Their utility is dictated by their composition and physical parameters such as particle size, particle shape, and overall architecture (e.g., hollow vs. solid). Interestingly, the addition of a second metal to create bimetallic NPs adds multifunctionality, with new emergent properties common. However, synthesizing structurally defined bimetallic NPs remains a great challenge. One synthetic pathway to architecturally controlled bimetallic NPs is seed-mediated co-reduction (SMCR) in which two metal precursors are simultaneously co-reduced to deposit metal onto shape-controlled metal seeds, which direct the overgrowth. Previously demonstrated in a Au-Pd system, here SMCR is applied to a system with a larger lattice mismatch between the depositing metals: Pd and Cu (7% mismatch for Pd-Cu vs. 4% for Au-Pd). Through manipulation of precursor reduction kinetics, the morphology and bimetallic distribution of the resultant NPs can be tuned to achieve eight-branched Pd-Cu heterostructures with Cu localized at the tips of the Pd nanocubes as well as branched Pd-Cu alloyed nanostructures and polyhedra. Significantly, the symmetry of the seeds can be transferred to the final nanostructures. This study expands our understanding of SMCR as a route to structurally defined bimetallic nanostructures and the synthesis of multicomponent nanomaterials more generally.
金属纳米粒子 (NPs) 在催化、电子、化学传感等领域的应用中具有重要意义。它们的用途取决于它们的组成和物理参数,如粒径、颗粒形状和整体结构(例如,空心与实心)。有趣的是,添加第二种金属来制造双金属 NPs 增加了多功能性,常见的是新出现的共同性质。然而,合成结构明确的双金属 NPs 仍然是一个巨大的挑战。一种结构控制双金属 NPs 的合成途径是种子介导共还原 (SMCR),其中两种金属前体同时共还原,将金属沉积到形状控制的金属种子上,从而引导生长。以前在 Au-Pd 系统中得到证明,在这里,SMCR 被应用于沉积金属之间晶格失配较大的系统:Pd 和 Cu(Pd-Cu 为 7%,而 Au-Pd 为 4%)。通过控制前体还原动力学,可以调整所得 NPs 的形态和双金属分布,以实现具有 Cu 定位在 Pd 纳米立方体尖端的八叉形 Pd-Cu 异质结构以及分支 Pd-Cu 合金纳米结构和多面体。重要的是,种子的对称性可以转移到最终的纳米结构。这项研究扩展了我们对 SMCR 的理解,将其作为一种制备结构明确的双金属纳米结构以及更普遍地合成多组分纳米材料的途径。