Faculty of Natural Resources & Marine Sciences, Tarbiat Modares University, 46417-76489 Noor, Mazandaran, Iran.
Faculty of Natural Resources & Marine Sciences, Tarbiat Modares University, 46417-76489 Noor, Mazandaran, Iran.
Sci Total Environ. 2017 Dec 1;599-600:1646-1657. doi: 10.1016/j.scitotenv.2017.05.077. Epub 2017 May 19.
Soil organic carbon (SOC) contains a considerable portion of the world's terrestrial carbon stock, and is affected by changes in land cover and climate. SOC modeling is a useful approach to assess the impact of land use, land use change and climate change on carbon (C) sequestration. This study aimed to: (i) test the performance of RothC model using data measured from different land covers in Hyrcanian forests (northern Iran); and (ii) predict changes in SOC under different climate change scenarios that may occur in the future. The following land covers were considered: Quercus castaneifolia (QC), Acer velutinum (AV), Alnus subcordata (AS), Cupressus sempervirens (CS) plantations and a natural forest (NF). For assessment of future climate change projections the Fifth Assessment IPCC report was used. These projections were generated with nine Global Climate Models (GCMs), for two Representative Concentration Pathways (RCPs) leading to very low and high greenhouse gases concentration levels (RCP 2.6 and RCP 8.5 respectively), and for four 20year-periods up to 2099 (2030s, 2050s, 2070s and 2090s). Simulated values of SOC correlated well with measured data (R=0.64 to 0.91) indicating a good efficiency of the RothC model. Our results showed an overall decrease in SOC stocks by 2099 under all land covers and climate change scenarios, but the extent of the decrease varied with the climate models, the emissions scenarios, time periods and land covers. Acer velutinum plantation was the most sensitive land cover to future climate change (range of decrease 8.34-21.83tCha). Results suggest that modeling techniques can be effectively applied for evaluating SOC stocks, allowing the identification of current patterns in the soil and the prediction of future conditions.
土壤有机碳(SOC)包含了世界陆地碳储量的相当一部分,并且受到土地覆盖和气候变化的影响。SOC 建模是评估土地利用、土地利用变化和气候变化对碳(C)固存影响的一种有用方法。本研究旨在:(i)使用来自伊朗北部 Hyrcanian 森林不同土地覆盖的测量数据来测试 RothC 模型的性能;(ii)预测未来可能发生的不同气候变化情景下 SOC 的变化。考虑了以下土地覆盖类型:栓皮栎(QC)、绒毛槭(AV)、腺柳(AS)、柏木(CS)人工林和天然林(NF)。为了评估未来气候变化预测,使用了第五次评估报告的 IPCC。这些预测是由九个全球气候模型(GCM)生成的,针对两种代表性浓度途径(RCP),导致温室气体浓度非常低和高(分别为 RCP 2.6 和 RCP 8.5),以及四个 20 年时期,直至 2099 年(分别为 2030 年代、2050 年代、2070 年代和 2090 年代)。SOC 的模拟值与实测数据相关性较好(R=0.64 至 0.91),表明 RothC 模型效率较高。我们的结果表明,在所有土地覆盖和气候变化情景下,SOC 储量到 2099 年总体呈下降趋势,但下降幅度因气候模型、排放情景、时间段和土地覆盖而异。绒毛槭人工林是对未来气候变化最敏感的土地覆盖类型(下降幅度为 8.34-21.83tCha)。结果表明,建模技术可以有效地应用于评估 SOC 储量,从而识别当前土壤模式并预测未来条件。