Suppr超能文献

使用随机排列和设计的合成肽进行抗菌活性预测因子的基准分析。

Antimicrobial activity predictors benchmarking analysis using shuffled and designed synthetic peptides.

作者信息

Porto William F, Pires Állan S, Franco Octavio L

机构信息

Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil; Porto Reports, Brasília, Distrito Federal, Brazil.

Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil.

出版信息

J Theor Biol. 2017 Aug 7;426:96-103. doi: 10.1016/j.jtbi.2017.05.011. Epub 2017 May 20.

Abstract

The antimicrobial activity prediction tools aim to help the novel antimicrobial peptides (AMP) sequences discovery, utilizing machine learning methods. Such approaches have gained increasing importance in the generation of novel synthetic peptides by means of rational design techniques. This study focused on predictive ability of such approaches to determine the antimicrobial sequence activities, which were previously characterized at the protein level by in vitro studies. Using four web servers and one standalone software, we evaluated 78 sequences generated by the so-called linguistic model, being 40 designed and 38 shuffled sequences, with ∼60 and ∼25% of identity to AMPs, respectively. The ab initio molecular modelling of such sequences indicated that the structure does not affect the predictions, as both sets present similar structures. Overall, the systems failed on predicting shuffled versions of designed peptides, as they are identical in AMPs composition, which implies in accuracies below 30%. The prediction accuracy is negatively affected by the low specificity of all systems here evaluated, as they, on the other hand, reached 100% of sensitivity. Our results suggest that complementary approaches with high specificity, not necessarily high accuracy, should be developed to be used together with the current systems, overcoming their limitations.

摘要

抗菌活性预测工具旨在利用机器学习方法帮助发现新型抗菌肽(AMP)序列。此类方法在通过合理设计技术生成新型合成肽方面越来越重要。本研究聚焦于此类方法确定抗菌序列活性的预测能力,这些活性先前已通过体外研究在蛋白质水平上进行了表征。我们使用四个网络服务器和一个独立软件,评估了由所谓语言模型生成的78个序列,其中40个为设计序列,38个为随机排列序列,它们与AMPs的一致性分别约为60%和25%。对此类序列的从头算分子建模表明,结构不会影响预测,因为两组序列具有相似的结构。总体而言,这些系统在预测设计肽的随机排列版本时失败了,因为它们在AMPs组成上是相同的,这意味着准确率低于30%。这里评估的所有系统的低特异性对预测准确性产生了负面影响,另一方面,它们的灵敏度达到了100%。我们的结果表明,应开发具有高特异性(不一定是高精度)的互补方法,以便与当前系统一起使用,克服它们的局限性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验