Suppr超能文献

感知瞬间:基于疏水矩的高灵敏度抗菌活性预测器。

Sense the moment: A highly sensitive antimicrobial activity predictor based on hydrophobic moment.

机构信息

Porto Reports, Brasília, DF, Brazil.

Pós-Graduação em Ciências Genômicas e Biotecnologia Universidade Católica de Brasília, Brasília, DF, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia Universidade Católica de Brasília, Brasília, DF, Brazil.

出版信息

Biochim Biophys Acta Gen Subj. 2022 Mar;1866(3):130070. doi: 10.1016/j.bbagen.2021.130070. Epub 2021 Dec 22.

Abstract

BACKGROUND

Computer-aided identification and design tools are indispensable for developing antimicrobial agents for controlling antibiotic-resistant bacteria. Antimicrobial peptides (AMPs) have aroused intense interest, since they have a broad spectrum of activity, and therefore, several systems for predicting antimicrobial peptides have been developed, using scalar physicochemical properties; however, regardless of the machine learning algorithm, these systems often fail in discriminating AMPs from their shuffled versions, leading to the need for new training methods to overcome this bias. Aiming to solve this bias, here we present "Sense the Moment", a prediction system capable of discriminating AMPs and shuffled versions.

METHODS

The system was trained using 776 entries: 388 from known AMPs and another 388 based on shuffled versions of known AMPs. Each entry contained the geometric average of three hydrophobic moments measured with different scales.

RESULTS

The model showed good accuracy (>80%) and excellent sensitivity (>90%) for AMP prediction, exceeding deep-learning-based methods.

CONCLUSION

Our results demonstrate the system's applicability, aiding in identifying and discarding non-AMPs, since the number of false negatives is lower than false positives.

GENERAL SIGNIFICANCE

The application of this model in virtual screening protocols for identifying and/or creating antimicrobial agents could aid in the identification of potential drugs to control pathogenic microorganisms and in solving the antibiotic resistance crisis.

AVAILABILITY

The system was implemented as a web application, available at http://portoreports.com/stm/.

摘要

背景

开发用于控制抗药性细菌的抗菌剂,计算机辅助识别和设计工具是不可或缺的。抗菌肽(AMPs)引起了极大的兴趣,因为它们具有广谱的活性,因此已经开发了几种预测抗菌肽的系统,使用标量物理化学性质;然而,无论机器学习算法如何,这些系统通常无法区分 AMPs 与其随机版本,因此需要新的训练方法来克服这种偏差。为了解决这个偏差,我们在这里提出了“感知瞬间”(Sense the Moment),这是一个能够区分 AMPs 和随机版本的预测系统。

方法

该系统使用 776 个条目进行训练:388 个来自已知的 AMPs,另外 388 个基于已知 AMPs 的随机版本。每个条目都包含用不同尺度测量的三个疏水矩的几何平均值。

结果

该模型对 AMP 预测具有良好的准确性(>80%)和出色的灵敏度(>90%),超过了基于深度学习的方法。

结论

我们的结果表明该系统的适用性,有助于识别和丢弃非 AMPs,因为假阴性的数量低于假阳性。

一般意义

该模型在识别和/或创建抗菌剂的虚拟筛选协议中的应用,可能有助于识别控制病原微生物的潜在药物,并解决抗生素耐药性危机。

可用性

该系统被实现为一个网络应用程序,可在http://portoreports.com/stm/上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验