Wang Jiao, Deng Zhiqiang
Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA.
Environ Monit Assess. 2017 Jun;189(6):286. doi: 10.1007/s10661-017-6010-7. Epub 2017 May 23.
A new algorithm was developed for retrieving sea surface temperature (SST) in coastal waters using satellite remote sensing data from Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Aqua platform. The new SST algorithm was trained using the Artificial Neural Network (ANN) method and tested using 8 years of remote sensing data from MODIS Aqua sensor and in situ sensing data from the US coastal waters in Louisiana, Texas, Florida, California, and New Jersey. The ANN algorithm could be utilized to map SST in both deep offshore and particularly shallow nearshore waters at the high spatial resolution of 1 km, greatly expanding the coverage of remote sensing-based SST data from offshore waters to nearshore waters. Applications of the ANN algorithm require only the remotely sensed reflectance values from the two MODIS Aqua thermal bands 31 and 32 as input data. Application results indicated that the ANN algorithm was able to explaining 82-90% variations in observed SST in US coastal waters. While the algorithm is generally applicable to the retrieval of SST, it works best for nearshore waters where important coastal resources are located and existing algorithms are either not applicable or do not work well, making the new ANN-based SST algorithm unique and particularly useful to coastal resource management.
利用搭载在Aqua平台上的中分辨率成像光谱仪(MODIS)的卫星遥感数据,开发了一种用于反演沿海水域海表面温度(SST)的新算法。新的SST算法采用人工神经网络(ANN)方法进行训练,并使用来自MODIS Aqua传感器的8年遥感数据以及来自美国路易斯安那州、得克萨斯州、佛罗里达州、加利福尼亚州和新泽西州沿海水域的现场传感数据进行测试。ANN算法可用于以1公里的高空间分辨率绘制深海和特别是浅近岸水域的SST,大大扩展了基于遥感的SST数据从近海到近岸水域的覆盖范围。ANN算法的应用仅需要来自MODIS Aqua的两个热波段31和32的遥感反射率值作为输入数据。应用结果表明,ANN算法能够解释美国沿海水域观测到的SST中82%至90%的变化。虽然该算法通常适用于SST的反演,但它在重要沿海资源所在的近岸水域效果最佳,而现有算法要么不适用,要么效果不佳,这使得基于ANN的新SST算法独具特色,对沿海资源管理特别有用。