Harbor Branch Oceanographic Institute, Florida Atlantic University, FL 34946, USA; Centre of Studies in Resources Engineering, Indian Institute of Technology Bombay, Bombay 400076, India.
Applied Research Center for Environment and Marine Studies, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
Sci Total Environ. 2022 Oct 20;844:157191. doi: 10.1016/j.scitotenv.2022.157191. Epub 2022 Jul 8.
The spatial and temporal variations of Chlorophyll-a (Chl-a) in clear and coastal waters are critical for assessing the health of the marine environment. Machine learning models have been proven to model complex relationships and provide better accuracy estimates of the derived parameters compared to traditional empirical models. The present study proposes a novel approach to derive Chl-a by using multi-layer perceptron Neural Network (MLPNN) with Resilient backpropagation method based on the four ocean color bands existent in most of the ocean color sensors. The NNs are trained on NASA's bio-optical Marine Algorithm Dataset (NOMAD) and tested on three different datasets (i) SeaWiFS and, (ii) MODIS Aqua matchup dataset, and (iii) simulated dataset for the Red Sea. These three datasets cover significant variations range in Chl-a levels under both oligotrophic and eutrophic conditions. The influence of different variations in inputs used in NN training is assessed and hyperparameter tuning of the NN is performed to obtain best NN configuration to derive Chl-a. Accuracy assessment of the present study with other global algorithms are performed by comparing the modeled and observed values of the Chl-a. The performance matrices computed from the developed model were promising. Therefore, this study provides a potential approach for the retrieval of improved Chl-a estimates in the global clear and coastal waters as compared to the traditional blue-green band ratio algorithms. Furthermore, the developed algorithm and existing algorithms are applied to SeaWiFS, MODIS, VIIRS, and Hawkeye satellite ocean color data to demonstrate how it may be utilized to accurately depict the spatial distribution of ocean color features in global waters, phytoplankton blooms and some of the physical processes in the Arabian Sea and the Red Sea. The findings of this work have potential to advance the ocean color remote sensing and biogeochemical cycles and processes in coastal and open ocean waters.
海水中叶绿素 a(Chl-a)的时空变化对于评估海洋环境的健康状况至关重要。与传统的经验模型相比,机器学习模型已被证明可以模拟复杂的关系,并提供更准确的导出参数估计。本研究提出了一种新的方法,通过使用基于大多数海洋光学传感器中存在的四个海洋颜色波段的多层感知机神经网络(MLPNN)与弹性反向传播方法来推导 Chl-a。神经网络在 NASA 的生物光学海洋算法数据集(NOMAD)上进行训练,并在三个不同的数据集上进行测试:(i)SeaWiFS 和(ii)MODIS Aqua 匹配数据集,以及(iii)红海模拟数据集。这三个数据集涵盖了贫营养和富营养条件下 Chl-a 水平的显著变化范围。评估了在神经网络训练中使用不同的输入变化的影响,并对神经网络进行了超参数调整,以获得最佳的神经网络配置来推导 Chl-a。通过比较 Chl-a 的模型值和观测值,对本研究与其他全球算法的准确性进行了评估。从开发的模型计算出的性能矩阵很有希望。因此,与传统的蓝-绿波段比算法相比,本研究为全球清澈和沿海水域中改进的 Chl-a 估算提供了一种潜在的方法。此外,还将开发的算法和现有的算法应用于 SeaWiFS、MODIS、VIIRS 和 Hawkeye 卫星海洋颜色数据,以展示如何利用它准确描绘全球水域、浮游植物大量繁殖以及阿拉伯海和红海部分物理过程的海洋颜色特征的空间分布。这项工作的结果有可能推进海洋颜色遥感以及沿海和开阔海洋水域的生物地球化学循环和过程。