Suppr超能文献

金属-配体配位和分级结构设计实现自修复、高灵敏度电子传感器。

Self-Healing, Highly Sensitive Electronic Sensors Enabled by Metal-Ligand Coordination and Hierarchical Structure Design.

机构信息

State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University , No. 24 South Section 1 of First Ring Road, Cheng Du 610065, China.

出版信息

ACS Appl Mater Interfaces. 2017 Jun 14;9(23):20106-20114. doi: 10.1021/acsami.7b05204. Epub 2017 Jun 1.

Abstract

Electronic sensors capable of capturing mechanical deformation are highly desirable for the next generation of artificial intelligence products. However, it remains a challenge to prepare self-healing, highly sensitive, and cost-efficient sensors for both tiny and large human motion monitoring. Here, a new kind of self-healing, sensitive, and versatile strain sensors has been developed by combining metal-ligand chemistry with hierarchical structure design. Specifically, a self-healing and nanostructured conductive layer is deposited onto a self-healing elastomer substrate cross-linked by metal-ligand coordinate bonds, forming a hierarchically structured sensor. The resultant sensors exhibit high sensitivity, low detection limit (0.05% strain), remarkable self-healing capability, as well as excellent reproducibility. Notably, the self-healed sensors are still capable to precisely capture not only tiny physiological activities (such as speech, swallowing, and coughing) but also large human motions (finger and neck bending, touching). Moreover, harsh treatments, including bending over 50000 times and mechanical washing, could not influence the sensitivity and stability of the self-healed sensors in human motion monitoring. This proposed strategy via alliance of metal-ligand chemistry and hierarchical structure design represents a general approach to manufacturing self-healing, robust sensors, and other electronic devices.

摘要

电子传感器能够捕捉机械变形,是下一代人工智能产品的理想选择。然而,为微小和大幅度人体运动监测制备自修复、高灵敏度和低成本效益的传感器仍然是一个挑战。在这里,通过将金属配体化学与分层结构设计相结合,开发了一种新型的自修复、灵敏和多功能应变传感器。具体来说,将自修复和纳米结构的导电层沉积到通过金属配体配位键交联的自修复弹性体基底上,形成分层结构的传感器。所得传感器表现出高灵敏度、低检测限(0.05%应变)、显著的自修复能力以及出色的可重复性。值得注意的是,自修复后的传感器仍然能够精确捕捉微小的生理活动(如言语、吞咽和咳嗽)以及大幅度的人体运动(手指和颈部弯曲、触摸)。此外,包括弯曲 50000 次以上和机械洗涤在内的苛刻处理都不会影响自修复传感器在人体运动监测中的灵敏度和稳定性。这种通过金属配体化学和分层结构设计联盟提出的策略代表了制造自修复、坚固传感器和其他电子设备的一种通用方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验