Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Department of Chemical Physics, University of Science and Technology of China , Hefei, Anhui 230026, PR China.
Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201204, PR China.
J Am Chem Soc. 2017 Jun 21;139(24):8152-8159. doi: 10.1021/jacs.7b01036. Epub 2017 Jun 6.
The research of active and sustainable electrocatalysts toward oxygen reduction reaction (ORR) is of great importance for industrial application of fuel cells. Here, we report a remarkable ORR catalyst with both excellent mass activity and durability based on sub 2 nm thick Rh-doped Pt nanowires, which combine the merits of high utilization efficiency of Pt atoms, anisotropic one-dimensional nanostructure, and doping of Rh atoms. Compared with commercial Pt/C catalyst, the Rh-doped Pt nanowires/C catalyst shows a 7.8 and 5.4-fold enhancement in mass activity and specific activity, respectively. The combination of extended X-ray absorption fine structure analysis and density functional theory calculations reveals that the compressive strain and ligand effect in Rh-doped Pt nanowires optimize the adsorption energy of hydroxyl and in turn enhance the specific activity. Moreover, even after 10000 cycles of accelerated durability test in O condition, the Rh-doped Pt nanowires/C catalyst exhibits a drop of 9.2% in mass activity, against a big decrease of 72.3% for commercial Pt/C. The improved durability can be rationalized by the increased vacancy formation energy of Pt atoms for Rh-doped Pt nanowires.
研究向氧还原反应(ORR)的活性和可持续电催化剂对于燃料电池的工业应用非常重要。在这里,我们报告了一种基于亚 2nm 厚的 Rh 掺杂 Pt 纳米线的具有优异质量活性和耐久性的 ORR 催化剂,它结合了 Pt 原子高利用率、各向异性一维纳米结构和 Rh 原子掺杂的优点。与商业 Pt/C 催化剂相比,Rh 掺杂 Pt 纳米线/C 催化剂的质量活性和比活性分别提高了 7.8 倍和 5.4 倍。扩展 X 射线吸收精细结构分析和密度泛函理论计算的组合表明,Rh 掺杂 Pt 纳米线中的压缩应变和配体效应优化了羟基的吸附能,从而提高了比活性。此外,即使在 O 条件下加速耐久性测试 10000 次循环后,Rh 掺杂 Pt 纳米线/C 催化剂的质量活性下降了 9.2%,而商业 Pt/C 的质量活性下降了 72.3%。Rh 掺杂 Pt 纳米线中 Pt 原子空位形成能的增加可以合理地解释其耐久性的提高。