Suppr超能文献

躯体感觉诱发电位成分分析定位脊髓损伤。

Component analysis of somatosensory evoked potentials for identifying spinal cord injury location.

机构信息

Spinal division, Department of Orthopaedics, Affiliated Hospital of Guangdong Medical College, Guangdong, 524001, China.

Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong.

出版信息

Sci Rep. 2017 May 24;7(1):2351. doi: 10.1038/s41598-017-02555-w.

Abstract

This study aims to determine whether the time-frequency components (TFCs) of somatosensory evoked potentials (SEPs) can be used to identify the specific location of a compressive spinal cord injury using a classification technique. Waveforms of SEPs after compressive injuries at various locations (C4, C5 and C6) in rat spinal cords were decomposed into a series of TFCs using a high-resolution time-frequency analysis method. A classification method based on support vector machine (SVM) was applied to the distributions of these TFCs among different pathological locations. The difference among injury locations manifests itself in different categories of SEP TFCs. High-energy TFCs of normal-state SEPs have significantly higher power and frequency than those of injury-state SEPs. The location of C5 is characterized by a unique distribution pattern of middle-energy TFCs. The difference between C4 and C6 is evidenced by the distribution pattern of low-energy TFCs. The proposed classification method based on SEP TFCs offers a discrimination accuracy of 80.2%. In this study, meaningful information contained in various SEP components was investigated and used to propose a new application of SEPs for identification of the location of pathological changes in the cervical spinal cord.

摘要

本研究旨在确定使用分类技术,是否可以通过对体感诱发电位(SEP)的时频成分(TFC)进行分析,来识别压迫性脊髓损伤的特定位置。采用高分辨率时频分析方法,将大鼠脊髓不同部位(C4、C5 和 C6)压迫性损伤后的 SEP 波形分解为一系列 TFC。基于支持向量机(SVM)的分类方法应用于不同病理位置的 TFC 分布。损伤位置的差异体现在不同类别的 SEP TFC 中。正常状态 SEP 的高能 TFC 具有比损伤状态 SEP 更高的能量和频率。C5 的特征是具有独特的中能 TFC 分布模式。C4 和 C6 的区别在于低能 TFC 的分布模式。基于 SEP TFC 的提出的分类方法具有 80.2%的判别准确率。本研究探讨了 SEP 各组成部分中包含的有意义信息,并将其用于提出 SEP 用于识别颈脊髓病变位置的新应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验