a Department of Medicine , University of Maryland School of Medicine , Baltimore , MD , USA.
b Medicine and Research Services, Baltimore Veterans Affairs Medical Care System , Baltimore , MD , USA.
Int J Hyperthermia. 2018 Feb;34(1):1-10. doi: 10.1080/02656736.2017.1316875. Epub 2017 Apr 26.
As environmental and body temperatures vary, lung epithelial cells experience temperatures significantly different from normal core temperature. Our previous studies in human lung epithelium showed that: (i) heat shock accelerates wound healing and activates profibrotic gene expression through heat shock factor-1 (HSF1); (ii) HSF1 is activated at febrile temperatures (38-41 °C) and (iii) hypothermia (32 °C) activates and hyperthermia (39.5 °C) reduces expression of a subset of miRNAs that target protein kinase-Cα (PKCα) and enhance proliferation.
We analysed the effect of hypo- and hyperthermia exposure on Wnt signalling by exposing human small airway epithelial cells (SAECs) and HEK293T cells to 32, 37 or 39.5 °C for 24 h, then analysing Wnt-3a-induced epithelial-mesenchymal transition (EMT) gene expression by qRT-PCR and TOPFlash reporter plasmid activity. Effects of miRNA mimics and inhibitors and the HSF1 inhibitor, KNK437, were evaluated.
Exposure to 39.5 °C for 24 h increased subsequent Wnt-3a-induced EMT gene expression in SAECs and Wnt-3a-induced TOPFlash activity in HEK293T cells. Increased Wnt responsiveness was associated with HSF1 activation and blocked by KNK437. Overexpressing temperature-responsive miRNA mimics reduced Wnt responsiveness in 39.5 °C-exposed HEK293T cells, but inhibitors of the same miRNAs failed to restore Wnt responsiveness in 32 °C-exposed HEK293T cells.
Wnt responsiveness, including expression of genes associated with EMT, increases after exposure to febrile-range temperature through an HSF1-dependent mechanism that is independent of previously identified temperature-dependent miRNAs. This process may be relevant to febrile fibrosing lung diseases, including the fibroproliferative phase of acute respiratory distress syndrome (ARDS) and exacerbations of idiopathic pulmonary fibrosis (IPF).
由于环境和体温的变化,肺上皮细胞经历的温度与正常核心温度有显著差异。我们之前在人肺上皮细胞中的研究表明:(i)热休克通过热休克因子-1(HSF1)加速伤口愈合并激活促纤维化基因表达;(ii)HSF1 在发热温度(38-41°C)下被激活;(iii)低温(32°C)激活和高温(39.5°C)减少靶向蛋白激酶-Cα(PKCα)的一组 miRNA 的表达,并增强增殖。
我们通过将人小气道上皮细胞(SAEC)和 HEK293T 细胞暴露于 32、37 或 39.5°C 24 小时,分析低温和高温暴露对 Wnt 信号的影响,然后通过 qRT-PCR 和 TOPFlash 报告质粒活性分析 Wnt-3a 诱导的上皮-间充质转化(EMT)基因表达。评估了 miRNA 模拟物和抑制剂以及 HSF1 抑制剂 KNK437 的作用。
暴露于 39.5°C 24 小时会增加 SAEC 中随后的 Wnt-3a 诱导的 EMT 基因表达和 HEK293T 细胞中 Wnt-3a 诱导的 TOPFlash 活性。增加的 Wnt 反应性与 HSF1 激活有关,并被 KNK437 阻断。在 39.5°C 暴露的 HEK293T 细胞中过表达温度响应性 miRNA 模拟物会降低 Wnt 反应性,但相同 miRNA 的抑制剂未能恢复 32°C 暴露的 HEK293T 细胞中的 Wnt 反应性。
通过 HSF1 依赖性机制,在暴露于发热范围的温度后,Wnt 反应性增加,包括与 EMT 相关的基因表达,该机制独立于先前鉴定的温度依赖性 miRNA。这个过程可能与发热性纤维性肺部疾病有关,包括急性呼吸窘迫综合征(ARDS)的纤维增生期和特发性肺纤维化(IPF)的恶化。