Suppr超能文献

基于三维纹理特征构建的个体层次网络的阿尔茨海默病分类

Alzheimer's Disease Classification Based on Individual Hierarchical Networks Constructed With 3-D Texture Features.

作者信息

Liu Jin, Wang Jianxin, Hu Bin, Wu Fang-Xiang, Pan Yi

出版信息

IEEE Trans Nanobioscience. 2017 Sep;16(6):428-437. doi: 10.1109/TNB.2017.2707139. Epub 2017 May 23.

Abstract

Brain network plays an important role in representing abnormalities in Alzheimers disease (AD) and mild cognitive impairment (MCI), which includes MCIc (MCI converted to AD) and MCInc (MCI not converted to AD). In our previous study, we proposed an AD classification approach based on individual hierarchical networks constructed with 3D texture features of brain images. However, we only used edge features of the networks without node features of the networks. In this paper, we propose a framework of the combination of multiple kernels to combine edge features and node features for AD classification. An evaluation of the proposed approach has been conducted with MRI images of 710 subjects (230 health controls (HC), 280 MCI (including 120 MCIc and 160 MCInc), and 200 AD) from the Alzheimer's disease neuroimaging initiative database by using ten-fold cross validation. Experimental results show that the proposed method is not only superior to the existing AD classification methods, but also efficient and promising for clinical applications for the diagnosis of AD via MRI images. Furthermore, the results also indicate that 3D texture could detect the subtle texture differences between tissues in AD, MCI, and HC, and texture features of MRI images might be related to the severity of AD cognitive impairment. These results suggest that 3D texture is a useful aid in AD diagnosis.

摘要

脑网络在表征阿尔茨海默病(AD)和轻度认知障碍(MCI,包括转化为AD的MCIc和未转化为AD的MCInc)的异常方面发挥着重要作用。在我们之前的研究中,我们提出了一种基于利用脑图像的3D纹理特征构建的个体层次网络的AD分类方法。然而,我们仅使用了网络的边缘特征,而未使用网络的节点特征。在本文中,我们提出了一种多核组合框架,将边缘特征和节点特征相结合用于AD分类。我们使用阿尔茨海默病神经影像学计划数据库中710名受试者(230名健康对照(HC)、280名MCI(包括120名MCIc和160名MCInc)以及200名AD)的MRI图像,通过十折交叉验证对所提出的方法进行了评估。实验结果表明,所提出的方法不仅优于现有的AD分类方法,而且在通过MRI图像进行AD诊断的临床应用中高效且具有前景。此外,结果还表明,3D纹理能够检测出AD、MCI和HC组织之间细微的纹理差异,并且MRI图像的纹理特征可能与AD认知障碍的严重程度相关。这些结果表明,3D纹理在AD诊断中是一种有用的辅助手段。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验