Araki Kiwako S, Kubo Takuya, Kudoh Hiroshi
Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan.
Department of Biotechnology, Faculty of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan.
PLoS One. 2017 May 22;12(5):e0178145. doi: 10.1371/journal.pone.0178145. eCollection 2017.
In sessile organisms such as plants, spatial genetic structures of populations show long-lasting patterns. These structures have been analyzed across diverse taxa to understand the processes that determine the genetic makeup of organismal populations. For many sessile organisms that mainly propagate via clonal spread, epigenetic status can vary between clonal individuals in the absence of genetic changes. However, fewer previous studies have explored the epigenetic properties in comparison to the genetic properties of natural plant populations. Here, we report the simultaneous evaluation of the spatial structure of genetic and epigenetic variation in a natural population of the clonal plant Cardamine leucantha. We applied a hierarchical Bayesian model to evaluate the effects of membership of a genet (a group of individuals clonally derived from a single seed) and vegetation cover on the epigenetic variation between ramets (clonal plants that are physiologically independent individuals). We sampled 332 ramets in a 20 m × 20 m study plot that contained 137 genets (identified using eight SSR markers). We detected epigenetic variation in DNA methylation at 24 methylation-sensitive amplified fragment length polymorphism (MS-AFLP) loci. There were significant genet effects at all 24 MS-AFLP loci in the distribution of subepiloci. Vegetation cover had no statistically significant effect on variation in the majority of MS-AFLP loci. The spatial aggregation of epigenetic variation is therefore largely explained by the aggregation of ramets that belong to the same genets. By applying hierarchical Bayesian analyses, we successfully identified a number of genet-specific changes in epigenetic status within a natural plant population in a complex context, where genotypes and environmental factors are unevenly distributed. This finding suggests that it requires further studies on the spatial epigenetic structure of natural populations of diverse organisms, particularly for sessile clonal species.
在诸如植物等固着生物中,种群的空间遗传结构呈现出持久的模式。已对多种分类群的这些结构进行了分析,以了解决定生物种群基因组成的过程。对于许多主要通过克隆传播进行繁殖的固着生物而言,在没有基因变化的情况下,表观遗传状态在克隆个体之间可能会有所不同。然而,与天然植物种群的遗传特性相比,以往探索表观遗传特性的研究较少。在此,我们报告了对克隆植物白花碎米荠天然种群中遗传和表观遗传变异的空间结构的同步评估。我们应用分层贝叶斯模型来评估基株(一组从单个种子克隆衍生而来的个体)成员身份和植被覆盖对分株(生理上独立的克隆植物个体)之间表观遗传变异的影响。我们在一个20米×20米的研究样地中对332个分株进行了采样,该样地包含137个基株(使用八个简单序列重复标记鉴定)。我们在24个甲基化敏感扩增长度多态性(MS-AFLP)位点检测到了DNA甲基化的表观遗传变异。在所有24个MS-AFLP位点的亚位点分布中都存在显著的基株效应。植被覆盖对大多数MS-AFLP位点的变异没有统计学上的显著影响。因此,表观遗传变异的空间聚集在很大程度上是由属于同一基株的分株的聚集所解释的。通过应用分层贝叶斯分析,我们成功地在一个复杂的环境中识别出了天然植物种群内许多基株特异性的表观遗传状态变化,在该环境中基因型和环境因素分布不均。这一发现表明,需要进一步研究不同生物天然种群的空间表观遗传结构,特别是对于固着克隆物种。