Suppr超能文献

[The similarity of the primary structure and homology of rhodopsin, beta-adrenoreceptor and muscarinic cholinoceptor].

作者信息

Tsendina M B, Frishman D I, Levchenko V F, Berman A L

出版信息

Zh Evol Biokhim Fiziol. 1988 Nov-Dec;24(6):797-807.

PMID:2854348
Abstract

Computer analysis has been made of the primary structure of 6 different types of receptor proteins: rhodopsin, adrenoreceptor, muscarinic acetylcholine receptor, insulin receptor, nicotinic cholinoreceptor, and bacteriorhodopsin. The aim of the present investigation was to elucidate, at least partially, to what extent insignificant similarity in the primary structure of rhodopsin, muscarinic cholinoreceptor and adrenoreceptor is due to divergent, but not convergent, evolution. Nicotinic cholinoreceptor, bacteriorhodopsin and insulin receptor were chosen for comparison with rhodopsin, adrenoreceptor and muscarinic cholinoreceptor since each of these proteins exhibits this or that structural or functional property which is common for rhodopsin, adrenoreceptor or muscarinic cholinoreceptor; on the other hand, nicotinic cholinoreceptor, bacteriorhodopsin and insulin receptor differ from other receptor proteins by their molecular mechanisms. Comparison of the primary structure of rhodopsin, adrenoreceptor and muscarinic cholinoreceptor on the one hand, and insulin receptor, nicotinic cholinoreceptor and bacteriorhodopsin on the other indicates that only the former exhibit similar primary structure, whereas insulin receptor, nicotinic cholinoreceptor and bacteriorhodopsin show no similarity neither in their primary structure, nor in the primary structure of rhodopsin and other receptor proteins which are similar to the latter with respect to their mode of action. The data obtained indicate that similarity in the primary structure between rhodopsin, muscarinic cholinoreceptor and adrenoreceptor is a consequence of divergent, not convergent, evolution; in other words, these receptor proteins are homologous.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验