Rousselet Guillaume A, Pernet Cyril R, Wilcox Rand R
Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, 58 Hillhead Street, G12 8QB, Glasgow, UK.
Centre for Clinical Brain Sciences, Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK.
Eur J Neurosci. 2017 Jul;46(2):1738-1748. doi: 10.1111/ejn.13610. Epub 2017 Jun 29.
If many changes are necessary to improve the quality of neuroscience research, one relatively simple step could have great pay-offs: to promote the adoption of detailed graphical methods, combined with robust inferential statistics. Here, we illustrate how such methods can lead to a much more detailed understanding of group differences than bar graphs and t-tests on means. To complement the neuroscientist's toolbox, we present two powerful tools that can help us understand how groups of observations differ: the shift function and the difference asymmetry function. These tools can be combined with detailed visualisations to provide complementary perspectives about the data. We provide implementations in R and MATLAB of the graphical tools, and all the examples in the article can be reproduced using R scripts.
如果要提高神经科学研究的质量需要进行许多改变,那么一个相对简单的步骤可能会带来巨大的回报:推广采用详细的图形方法,并结合强大的推断统计。在这里,我们说明了与均值条形图和t检验相比,这些方法如何能让我们对组间差异有更详细的理解。为了补充神经科学家的工具箱,我们展示了两个强大的工具,它们可以帮助我们理解观察组之间的差异:移位函数和差异不对称函数。这些工具可以与详细的可视化相结合,以提供关于数据的互补观点。我们提供了图形工具在R和MATLAB中的实现,并且文章中的所有示例都可以使用R脚本进行重现。