Suppr超能文献

谨慎表达:表位标签和cDNA变体对hERG通道转运、半衰期及功能的影响

Express with caution: Epitope tags and cDNA variants effects on hERG channel trafficking, half-life and function.

作者信息

Osterbur Badhey Marika L, Bertalovitz Alexander C, McDonald Thomas V

机构信息

Department of Molecular Pharmacology, Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, Bronx, New York, USA.

出版信息

J Cardiovasc Electrophysiol. 2017 Sep;28(9):1070-1082. doi: 10.1111/jce.13259. Epub 2017 Jun 23.

Abstract

INTRODUCTION

Genetic mutations in KCNH2, which encodes hERG, the alpha subunit of the potassium channel responsible for the I current, cause long QT syndrome (LQTS), an inherited cardiac arrhythmia disorder. Electrophysiology techniques are used to correlate genotype with molecular phenotype to determine which mutations identified in patients diagnosed with LQTS are disease causing, and which are benign. These investigations are usually done using heterologous expression in cell lines, and often, epitope fusion tags are used to enable isolation and identification of the protein of interest.

METHODS AND RESULTS

Here, we demonstrate through electrophysiology techniques and immunohistochemistry, that both N-terminal and C-terminal myc fusion tags may perturb hERG protein channel expression and kinetics of the I current. We also characterize the impact of 2 previously reported inadvertent cDNA variants on hERG channel expression and half-life.

CONCLUSION

Our results underscore the importance of careful characterization of the impact of epitope fusion tags and of confirming complete sequence accuracy prior to genotype-phenotype studies for ion channel proteins such as hERG.

摘要

引言

KCNH2基因发生突变,该基因编码hERG,即负责I电流的钾通道的α亚基,会导致长QT综合征(LQTS),这是一种遗传性心律失常疾病。电生理学技术用于将基因型与分子表型相关联,以确定在被诊断为LQTS的患者中鉴定出的哪些突变是致病的,哪些是良性的。这些研究通常使用细胞系中的异源表达来进行,并且通常会使用表位融合标签来分离和鉴定感兴趣的蛋白质。

方法与结果

在此,我们通过电生理学技术和免疫组织化学证明,N端和C端的myc融合标签均可能干扰hERG蛋白通道的表达以及I电流的动力学。我们还表征了2种先前报道的无意cDNA变体对hERG通道表达和半衰期的影响。

结论

我们的结果强调了在对诸如hERG等离子通道蛋白进行基因型-表型研究之前,仔细表征表位融合标签的影响并确认完整序列准确性的重要性。

相似文献

1
Express with caution: Epitope tags and cDNA variants effects on hERG channel trafficking, half-life and function.
J Cardiovasc Electrophysiol. 2017 Sep;28(9):1070-1082. doi: 10.1111/jce.13259. Epub 2017 Jun 23.
3
A novel mutation in KCNH2 yields loss-of-function of hERG potassium channel in long QT syndrome 2.
Pflugers Arch. 2021 Feb;473(2):219-229. doi: 10.1007/s00424-021-02518-1. Epub 2021 Jan 15.
4
High-throughput discovery of trafficking-deficient variants in the cardiac potassium channel K11.1.
Heart Rhythm. 2020 Dec;17(12):2180-2189. doi: 10.1016/j.hrthm.2020.05.041. Epub 2020 Jun 6.
5
The mutation L69P in the PAS domain of the hERG potassium channel results in LQTS by trafficking deficiency.
Channels (Austin). 2020 Dec;14(1):163-174. doi: 10.1080/19336950.2020.1751522.
7
Tbx20 controls the expression of the KCNH2 gene and of hERG channels.
Proc Natl Acad Sci U S A. 2017 Jan 17;114(3):E416-E425. doi: 10.1073/pnas.1612383114. Epub 2017 Jan 3.
8
A standardised hERG phenotyping pipeline to evaluate KCNH2 genetic variant pathogenicity.
Clin Transl Med. 2021 Nov;11(11):e609. doi: 10.1002/ctm2.609.
9
Novel characteristics of a trafficking-defective G572R-hERG channel linked to hereditary long QT syndrome.
Can J Cardiol. 2010 Oct;26(8):417-22. doi: 10.1016/s0828-282x(10)70439-6.

引用本文的文献

1
In silico analysis of the dynamic regulation of cardiac electrophysiology by K 11.1 ion-channel trafficking.
J Physiol. 2023 Jul;601(13):2711-2731. doi: 10.1113/JP283976. Epub 2023 Feb 20.
2
3
Efficient expression of a cnidarian peptide-gated ion channel in mammalian cells.
Channels (Austin). 2021 Dec;15(1):273-283. doi: 10.1080/19336950.2021.1882762.
4
Synonymous nucleotide modification of the gene affects both mRNA characteristics and translation of the encoded hERG ion channel.
J Biol Chem. 2018 Aug 3;293(31):12120-12136. doi: 10.1074/jbc.RA118.001805. Epub 2018 Jun 15.

本文引用的文献

1
An Interdomain KCNH2 Mutation Produces an Intermediate Long QT Syndrome.
Hum Mutat. 2015 Aug;36(8):764-73. doi: 10.1002/humu.22805. Epub 2015 Jun 13.
2
Molecular pathophysiology of Bartter's and Gitelman's syndromes.
World J Pediatr. 2015 May;11(2):113-25. doi: 10.1007/s12519-015-0016-4. Epub 2015 Mar 9.
3
Cystic fibrosis genetics: from molecular understanding to clinical application.
Nat Rev Genet. 2015 Jan;16(1):45-56. doi: 10.1038/nrg3849. Epub 2014 Nov 18.
4
Role of the cytoplasmic N-terminal Cap and Per-Arnt-Sim (PAS) domain in trafficking and stabilization of Kv11.1 channels.
J Biol Chem. 2014 May 16;289(20):13782-91. doi: 10.1074/jbc.M113.531277. Epub 2014 Apr 2.
5
Total protein analysis as a reliable loading control for quantitative fluorescent Western blotting.
PLoS One. 2013 Aug 30;8(8):e72457. doi: 10.1371/journal.pone.0072457. eCollection 2013.
7
Cardiac channelopathies: genetic and molecular mechanisms.
Gene. 2013 Mar 15;517(1):1-11. doi: 10.1016/j.gene.2012.12.061. Epub 2012 Dec 22.
8
Malignant hyperthermia: clinical and molecular aspects.
Rev Bras Anestesiol. 2012 Nov-Dec;62(6):820-37. doi: 10.1016/S0034-7094(12)70182-4.
9
Voltage-sensing domain mode shift is coupled to the activation gate by the N-terminal tail of hERG channels.
J Gen Physiol. 2012 Sep;140(3):293-306. doi: 10.1085/jgp.201110761. Epub 2012 Aug 13.
10
HERG potassium channel regulation by the N-terminal eag domain.
Cell Signal. 2012 Aug;24(8):1592-8. doi: 10.1016/j.cellsig.2012.04.004. Epub 2012 Apr 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验