BioMed X Innovation Center, Im Neuenheimer Feld 515, 69120, Heidelberg, Germany.
ChemMedChem. 2018 Mar 20;13(6):495-499. doi: 10.1002/cmdc.201700180. Epub 2017 Jun 26.
Extensive kinase profiling data, covering more than half of the human kinome, are available nowadays and allow the construction of activity prediction models of high practical utility. Proteochemometric (PCM) approaches use compound and protein descriptors, which enables the extrapolation of bioactivity values to thus far unexplored kinases. In this study, the potential of PCM to make large-scale predictions on the entire kinome is explored, considering the applicability on novel compounds and kinases, including clinically relevant mutants. A rigorous validation indicates high predictive power on left-out kinases and superiority over individual kinase QSAR models for new compounds. Furthermore, external validation on clinically relevant mutant kinases reveals an excellent predictive power for mutations spread across the ATP binding site.
目前已有大量涵盖超过一半人类激酶组的广泛激酶谱分析数据,可用于构建具有高实际应用价值的活性预测模型。基于配体和蛋白描述符的计算化学计量学(PCM)方法可将生物活性值外推至目前尚未研究的激酶,从而实现广泛的预测。在这项研究中,考虑到新型化合物和激酶(包括临床相关突变体)的适用性,探索了 PCM 在整个激酶组中进行大规模预测的潜力。严格的验证表明,该方法对保留激酶具有较高的预测能力,并且优于针对新化合物的单个激酶 QSAR 模型。此外,对临床相关突变激酶的外部验证表明,该方法对跨越 ATP 结合位点的突变具有出色的预测能力。