Drug Research Business Unit, PharmaBlock Sciences (Nanjing), Inc., 81 Huasheng Road, Jiangbei New Area, Nanjing, Jiangsu 210032, China.
J Chem Inf Model. 2024 Oct 14;64(19):7273-7290. doi: 10.1021/acs.jcim.4c00595. Epub 2024 Sep 25.
Characterizing the kinome selectivity profiles of kinase inhibitors is essential in the early stages of novel small-molecule drug discovery. This characterization is critical for interpreting potential adverse events caused by off-target polypharmacology effects and provides unique pharmacological insights for drug repurposing development of existing kinase inhibitor drugs. However, experimental profiling of whole kinome selectivity is still time-consuming and resource-demanding. Here, we report a deep learning classification model using an in-house built data set of inhibitors against 191 well-representative kinases constructed based on a novel strategy by systematically cleaning and integrating six public data sets. This model, a multitask deep neural network, predicts the kinome selectivity profiles of compounds with novel structures. The model demonstrates excellent predictive performance, with auROC, prc-AUC, Accuracy, and Binary_cross_entropy of 0.95, 0.92, 0.90, and 0.37, respectively. It also performs well in a priori testing for inhibitors targeting different categories of proteins from internal compound collections, significantly improving over similar models on data sets from practical application scenarios. Integrated to subsequent machine learning-enhanced virtual screening workflow, novel CDK2 kinase inhibitors with potent kinase inhibitory activity and excellent kinome selectivity profiles are successfully identified. Additionally, we developed a free online web server, KinomePro-DL, to predict the kinome selectivity profiles and kinome-wide polypharmacology effects of small molecules (available on kinomepro-dl.pharmablock.com). Uniquely, our model allows users to quickly fine-tune it with their own training data sets, enhancing both prediction accuracy and robustness.
表征激酶抑制剂的激酶组选择性特征对于新型小分子药物发现的早期阶段至关重要。这种特征对于解释由非靶标多药理学效应引起的潜在不良反应事件以及为现有激酶抑制剂药物的重新定位开发提供独特的药理学见解非常重要。然而,对整个激酶组选择性进行实验分析仍然是耗时且资源密集型的。在这里,我们报告了一种基于深度学习的分类模型,该模型使用基于系统清洁和整合六个公共数据集的新颖策略构建的针对 191 种代表性激酶的抑制剂的内部数据集进行构建。该模型是一种多任务深度神经网络,可预测具有新型结构的化合物的激酶组选择性特征。该模型具有出色的预测性能,auROC、prc-AUC、准确度和二进制交叉熵分别为 0.95、0.92、0.90 和 0.37。它还在内部化合物库中针对不同类别蛋白质的抑制剂的先验测试中表现良好,在来自实际应用场景的数据集上显著优于类似模型。将其集成到后续的机器学习增强虚拟筛选工作流程中,成功鉴定出具有强大激酶抑制活性和出色激酶组选择性特征的新型 CDK2 激酶抑制剂。此外,我们开发了一个免费的在线网络服务器 KinomePro-DL,用于预测小分子的激酶组选择性特征和全激酶组多药理学效应(可在 kinomepro-dl.pharmablock.com 上获得)。独特的是,我们的模型允许用户使用自己的训练数据集快速对其进行微调,从而提高预测准确性和鲁棒性。