Bykhovskaia Maria, Vasin Alexander
Department of Neurology, Wayne State University, Detroit, MI, USA.
Wiley Interdiscip Rev Dev Biol. 2017 Sep;6(5). doi: 10.1002/wdev.277. Epub 2017 May 24.
Synaptic transmission is dynamic, plastic, and highly regulated. Drosophila is an advantageous model system for genetic and molecular studies of presynaptic and postsynaptic mechanisms and plasticity. Electrical recordings of synaptic responses represent a wide-spread approach to study neuronal signaling and synaptic transmission. We discuss experimental techniques that allow monitoring synaptic transmission in Drosophila neuromuscular and central systems. Recordings of synaptic potentials or currents at the larval neuromuscular junction (NMJ) are most common and provide numerous technical advantages due to robustness of the preparation, large and identifiable muscles, and synaptic boutons which can be readily visualized. In particular, focal macropatch recordings combined with the analysis of neurosecretory quanta enable rigorous quantification of the magnitude and kinetics of transmitter release. Patch-clamp recordings of synaptic transmission from the embryonic NMJ enable overcoming the problem of lethality in mutant lines. Recordings from the adult NMJ proved instrumental in the studies of temperature-sensitive paralytic mutants. Genetic studies of behavioral learning in Drosophila compel an investigation of synaptic transmission in the central nervous system (CNS), including primary cultured neurons and an intact brain. Cholinergic and GABAergic synaptic transmission has been recorded from the Drosophila CNS both in vitro and in vivo. In vivo patch-clamp recordings of synaptic transmission from the neurons in the olfactory pathway is a very powerful approach, which has a potential to elucidate how synaptic transmission is associated with behavioral learning. WIREs Dev Biol 2017, 6:e277. doi: 10.1002/wdev.277 For further resources related to this article, please visit the WIREs website.
突触传递是动态的、可塑的且受到高度调节。果蝇是用于研究突触前和突触后机制及可塑性的遗传和分子研究的有利模型系统。突触反应的电记录是研究神经元信号传导和突触传递的一种广泛方法。我们讨论了可用于监测果蝇神经肌肉和中枢系统中突触传递的实验技术。在幼虫神经肌肉接头(NMJ)处记录突触电位或电流最为常见,由于标本的稳定性、大且可识别的肌肉以及易于可视化的突触小体,这种记录方式具有许多技术优势。特别是,局部大膜片钳记录与神经分泌量子分析相结合,能够对递质释放的幅度和动力学进行严格量化。从胚胎NMJ进行的突触传递膜片钳记录能够克服突变系中的致死性问题。在对温度敏感的麻痹突变体的研究中,来自成年NMJ的记录被证明是有用的。果蝇行为学习的遗传研究促使人们对中枢神经系统(CNS)中的突触传递进行研究,包括原代培养的神经元和完整的大脑。已经在体外和体内记录了果蝇CNS中的胆碱能和GABA能突触传递。对嗅觉通路中神经元的突触传递进行体内膜片钳记录是一种非常强大的方法,它有可能阐明突触传递与行为学习之间的关联。WIREs发育生物学2017年,6:e277。doi:10.1002/wdev.277 有关本文的更多资源,请访问WIREs网站。