Suppr超能文献

果蝇中突触传递的电生理分析。

Electrophysiological analysis of synaptic transmission in Drosophila.

作者信息

Bykhovskaia Maria, Vasin Alexander

机构信息

Department of Neurology, Wayne State University, Detroit, MI, USA.

出版信息

Wiley Interdiscip Rev Dev Biol. 2017 Sep;6(5). doi: 10.1002/wdev.277. Epub 2017 May 24.

Abstract

Synaptic transmission is dynamic, plastic, and highly regulated. Drosophila is an advantageous model system for genetic and molecular studies of presynaptic and postsynaptic mechanisms and plasticity. Electrical recordings of synaptic responses represent a wide-spread approach to study neuronal signaling and synaptic transmission. We discuss experimental techniques that allow monitoring synaptic transmission in Drosophila neuromuscular and central systems. Recordings of synaptic potentials or currents at the larval neuromuscular junction (NMJ) are most common and provide numerous technical advantages due to robustness of the preparation, large and identifiable muscles, and synaptic boutons which can be readily visualized. In particular, focal macropatch recordings combined with the analysis of neurosecretory quanta enable rigorous quantification of the magnitude and kinetics of transmitter release. Patch-clamp recordings of synaptic transmission from the embryonic NMJ enable overcoming the problem of lethality in mutant lines. Recordings from the adult NMJ proved instrumental in the studies of temperature-sensitive paralytic mutants. Genetic studies of behavioral learning in Drosophila compel an investigation of synaptic transmission in the central nervous system (CNS), including primary cultured neurons and an intact brain. Cholinergic and GABAergic synaptic transmission has been recorded from the Drosophila CNS both in vitro and in vivo. In vivo patch-clamp recordings of synaptic transmission from the neurons in the olfactory pathway is a very powerful approach, which has a potential to elucidate how synaptic transmission is associated with behavioral learning. WIREs Dev Biol 2017, 6:e277. doi: 10.1002/wdev.277 For further resources related to this article, please visit the WIREs website.

摘要

突触传递是动态的、可塑的且受到高度调节。果蝇是用于研究突触前和突触后机制及可塑性的遗传和分子研究的有利模型系统。突触反应的电记录是研究神经元信号传导和突触传递的一种广泛方法。我们讨论了可用于监测果蝇神经肌肉和中枢系统中突触传递的实验技术。在幼虫神经肌肉接头(NMJ)处记录突触电位或电流最为常见,由于标本的稳定性、大且可识别的肌肉以及易于可视化的突触小体,这种记录方式具有许多技术优势。特别是,局部大膜片钳记录与神经分泌量子分析相结合,能够对递质释放的幅度和动力学进行严格量化。从胚胎NMJ进行的突触传递膜片钳记录能够克服突变系中的致死性问题。在对温度敏感的麻痹突变体的研究中,来自成年NMJ的记录被证明是有用的。果蝇行为学习的遗传研究促使人们对中枢神经系统(CNS)中的突触传递进行研究,包括原代培养的神经元和完整的大脑。已经在体外和体内记录了果蝇CNS中的胆碱能和GABA能突触传递。对嗅觉通路中神经元的突触传递进行体内膜片钳记录是一种非常强大的方法,它有可能阐明突触传递与行为学习之间的关联。WIREs发育生物学2017年,6:e277。doi:10.1002/wdev.277 有关本文的更多资源,请访问WIREs网站。

相似文献

1
Electrophysiological analysis of synaptic transmission in Drosophila.
Wiley Interdiscip Rev Dev Biol. 2017 Sep;6(5). doi: 10.1002/wdev.277. Epub 2017 May 24.
3
The influence of postsynaptic structure on missing quanta at the Drosophila neuromuscular junction.
BMC Neurosci. 2016 Jul 26;17(1):53. doi: 10.1186/s12868-016-0290-7.
4
Neuron-type specific functions of DNT1, DNT2 and Spz at the Drosophila neuromuscular junction.
PLoS One. 2013 Oct 4;8(10):e75902. doi: 10.1371/journal.pone.0075902. eCollection 2013.
5
Electrophysiological analysis of synaptic transmission in central neurons of Drosophila larvae.
J Neurophysiol. 2002 Aug;88(2):847-60. doi: 10.1152/jn.2002.88.2.847.
8
C-terminal Src Kinase Gates Homeostatic Synaptic Plasticity and Regulates Fasciclin II Expression at the Drosophila Neuromuscular Junction.
PLoS Genet. 2016 Feb 22;12(2):e1005886. doi: 10.1371/journal.pgen.1005886. eCollection 2016 Feb.
9
Focal recording of synaptic currents from single boutons at the Drosophila neuromuscular junction.
Cold Spring Harb Protoc. 2010 Sep 1;2010(9):pdb.prot5489. doi: 10.1101/pdb.prot5489.
10
Intracellular Recordings of Postsynaptic Voltage Responses at the Drosophila Neuromuscular Junction.
Methods Mol Biol. 2020;2143:159-168. doi: 10.1007/978-1-0716-0585-1_12.

引用本文的文献

1
Monoamine-induced diacylglycerol signaling rapidly accumulates Unc13 in nanoclusters for fast presynaptic potentiation.
Proc Natl Acad Sci U S A. 2025 Aug 26;122(34):e2514151122. doi: 10.1073/pnas.2514151122. Epub 2025 Aug 20.
2
Dynein-driven regulation of postsynaptic membrane architecture and synaptic function.
J Cell Sci. 2025 Mar 1;138(5). doi: 10.1242/jcs.263844. Epub 2025 Mar 12.
3
A comprehensive review of electrophysiological techniques in amyotrophic lateral sclerosis research.
Front Cell Neurosci. 2024 Aug 30;18:1435619. doi: 10.3389/fncel.2024.1435619. eCollection 2024.
4
Mechanosensory and command contributions to the Drosophila grooming sequence.
Curr Biol. 2024 May 20;34(10):2066-2076.e3. doi: 10.1016/j.cub.2024.04.003. Epub 2024 Apr 23.
5
Mechanosensory and command contributions to the grooming sequence.
bioRxiv. 2023 Nov 20:2023.11.19.567707. doi: 10.1101/2023.11.19.567707.
7
Effects of Mono-2-ethylhexyl Phthalate on the Neural Transmission of PNs in Drosophila Antennal Lobe.
Neurotox Res. 2021 Oct;39(5):1430-1439. doi: 10.1007/s12640-021-00386-2. Epub 2021 Jun 30.

本文引用的文献

1
Interaction of the Complexin Accessory Helix with Synaptobrevin Regulates Spontaneous Fusion.
Biophys J. 2016 Nov 1;111(9):1954-1964. doi: 10.1016/j.bpj.2016.09.017.
2
Olfactory learning skews mushroom body output pathways to steer behavioral choice in Drosophila.
Curr Opin Neurobiol. 2015 Dec;35:178-84. doi: 10.1016/j.conb.2015.10.002. Epub 2015 Nov 3.
3
Plasticity-driven individualization of olfactory coding in mushroom body output neurons.
Nature. 2015 Oct 8;526(7572):258-62. doi: 10.1038/nature15396. Epub 2015 Sep 30.
4
RIM-binding protein links synaptic homeostasis to the stabilization and replenishment of high release probability vesicles.
Neuron. 2015 Mar 4;85(5):1056-69. doi: 10.1016/j.neuron.2015.01.024. Epub 2015 Feb 19.
5
Homeostatic control of presynaptic neurotransmitter release.
Annu Rev Physiol. 2015;77:251-70. doi: 10.1146/annurev-physiol-021014-071740. Epub 2014 Nov 5.
6
Genetic control of wiring specificity in the fly olfactory system.
Genetics. 2014 Jan;196(1):17-29. doi: 10.1534/genetics.113.154336.
7
Neurotransmitter release: the last millisecond in the life of a synaptic vesicle.
Neuron. 2013 Oct 30;80(3):675-90. doi: 10.1016/j.neuron.2013.10.022.
8
Spontaneous and evoked release are independently regulated at individual active zones.
J Neurosci. 2013 Oct 30;33(44):17253-63. doi: 10.1523/JNEUROSCI.3334-13.2013.
9
Shocking revelations and saccharin sweetness in the study of Drosophila olfactory memory.
Curr Biol. 2013 Sep 9;23(17):R752-63. doi: 10.1016/j.cub.2013.07.060.
10
Whole-cell in vivo patch-clamp recordings in the Drosophila brain.
Cold Spring Harb Protoc. 2013 Feb 1;2013(2):140-8. doi: 10.1101/pdb.prot071704.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验