Department of Molecular and Cellular Physiology, and Howard Hughes Medical Institute, Lorry Lokey SIM1 Building, 265 Campus Drive, Stanford University School of Medicine, Stanford, CA 94305, USA.
Neuron. 2013 Oct 30;80(3):675-90. doi: 10.1016/j.neuron.2013.10.022.
During an action potential, Ca(2+) entering a presynaptic terminal triggers synaptic vesicle exocytosis and neurotransmitter release in less than a millisecond. How does Ca(2+) stimulate release so rapidly and precisely? Work over the last decades revealed that Ca(2+) binding to synaptotagmin triggers release by stimulating synaptotagmin binding to a core fusion machinery composed of SNARE and SM proteins that mediates membrane fusion during exocytosis. Complexin adaptor proteins assist synaptotagmin by activating and clamping this core fusion machinery. Synaptic vesicles containing synaptotagmin are positioned at the active zone, the site of vesicle fusion, by a protein complex containing RIM proteins. RIM proteins activate docking and priming of synaptic vesicles and simultaneously recruit Ca(2+) channels to active zones, thereby connecting in a single complex primed synaptic vesicles to Ca(2+) channels. This architecture allows direct flow of Ca(2+) ions from Ca(2+) channels to synaptotagmin, which then triggers fusion, thus mediating tight millisecond coupling of an action potential to neurotransmitter release.
在动作电位期间,钙离子进入突触前末梢会在不到一毫秒的时间内触发突触小泡胞吐和神经递质释放。钙离子如何如此迅速和精确地刺激释放?过去几十年的研究工作表明,钙离子与突触融合蛋白结合会通过刺激突触融合蛋白与 SNARE 和 SM 蛋白组成的核心融合机制结合来触发释放,该机制介导胞吐过程中的膜融合。复合蛋白衔接蛋白通过激活和固定该核心融合机制来协助突触融合蛋白。含有突触融合蛋白的突触小泡通过包含 RIM 蛋白的蛋白质复合物定位于融合位点的活性区。RIM 蛋白激活突触小泡的 docking 和 priming,并同时将 Ca(2+) 通道募集到活性区,从而将预融合的突触小泡与 Ca(2+) 通道连接到单一的复合物中。这种结构允许 Ca(2+) 离子从 Ca(2+) 通道直接流向突触融合蛋白,从而触发融合,从而介导动作电位与神经递质释放之间紧密的毫秒级偶联。