Suppr超能文献

H3K36me3与H4K16ac组蛋白表观遗传标记在DNA双链断裂修复中的相互作用。

Cross-talk between the H3K36me3 and H4K16ac histone epigenetic marks in DNA double-strand break repair.

作者信息

Li Lin, Wang Yinsheng

机构信息

Department of Chemistry, University of California, Riverside, California 92521-0403.

Department of Chemistry, University of California, Riverside, California 92521-0403.

出版信息

J Biol Chem. 2017 Jul 14;292(28):11951-11959. doi: 10.1074/jbc.M117.788224. Epub 2017 May 25.

Abstract

Post-translational modifications of histone proteins regulate numerous cellular processes. Among these modifications, trimethylation of lysine 36 in histone H3 (H3K36me3) and acetylation of lysine 16 in histone H4 (H4K16ac) have important roles in transcriptional regulation and DNA damage response signaling. However, whether these two epigenetic histone marks are mechanistically linked remains unclear. Here we discovered a new pathway through which H3K36me3 stimulates H4K16ac upon DNA double-strand break (DSB) induction in human cells. In particular, we examined, using Western blot analysis, the levels of H3K36me3 and H4K16ac in cells after exposure to various DSB-inducing agents, including neocarzinostatin, γ rays, and etoposide, and found that H3K36me3 and H4K16ac were both elevated in cells upon these treatments. We also observed that DSB-induced H4K16 acetylation was abolished in cells upon depletion of the histone methyltransferase gene SET-domain containing 2 () and the ensuing loss of H3K36me3. Furthermore, the H3K36me3-mediated increase in H4K16ac necessitated lens epithelium-derived growth factor p75 splicing variant (LEDGF), which is a reader protein of H3K36me3, and the KAT5 (TIP60) histone acetyltransferase. Mechanistically, the chromatin-bound LEDGF, through its interaction with KAT5, promoted chromatin localization of KAT5, thereby stimulating H4K16 acetylation. In this study, we unveiled cross-talk between two important histone epigenetic marks and defined the function of this cross-talk in DNA DSB repair.

摘要

组蛋白的翻译后修饰调控着众多细胞过程。在这些修饰中,组蛋白H3赖氨酸36位点的三甲基化(H3K36me3)和组蛋白H4赖氨酸16位点的乙酰化(H4K16ac)在转录调控和DNA损伤应答信号传导中发挥着重要作用。然而,这两种表观遗传组蛋白标记在机制上是否存在联系仍不清楚。在此,我们发现了一条新途径,在人类细胞中,DNA双链断裂(DSB)诱导后,H3K36me3可刺激H4K16ac。具体而言,我们通过蛋白质免疫印迹分析检测了细胞在暴露于各种DSB诱导剂(包括新制癌菌素、γ射线和依托泊苷)后H3K36me3和H4K16ac的水平,发现经这些处理后细胞中的H3K36me3和H4K16ac均升高。我们还观察到,在组蛋白甲基转移酶基因含SET结构域2()缺失以及随之而来的H3K36me3缺失后,细胞中DSB诱导的H4K16乙酰化被消除。此外,H3K36me3介导的H4K16ac增加需要晶状体上皮衍生生长因子p75剪接变体(LEDGF),它是H3K36me3的一种读取蛋白,以及KAT5(TIP60)组蛋白乙酰转移酶。从机制上讲,与染色质结合的LEDGF通过与KAT5相互作用,促进了KAT5的染色质定位,从而刺激H4K16乙酰化。在本研究中,我们揭示了两种重要组蛋白表观遗传标记之间的相互作用,并确定了这种相互作用在DNA DSB修复中的功能。

相似文献

1
Cross-talk between the H3K36me3 and H4K16ac histone epigenetic marks in DNA double-strand break repair.
J Biol Chem. 2017 Jul 14;292(28):11951-11959. doi: 10.1074/jbc.M117.788224. Epub 2017 May 25.
2
The SETD2 Methyltransferase Supports Productive HPV31 Replication through the LEDGF/CtIP/Rad51 Pathway.
J Virol. 2023 May 31;97(5):e0020123. doi: 10.1128/jvi.00201-23. Epub 2023 May 8.
3
Selective binding of the PHD6 finger of MLL4 to histone H4K16ac links MLL4 and MOF.
Nat Commun. 2019 May 24;10(1):2314. doi: 10.1038/s41467-019-10324-8.
4
MOF and histone H4 acetylation at lysine 16 are critical for DNA damage response and double-strand break repair.
Mol Cell Biol. 2010 Jul;30(14):3582-95. doi: 10.1128/MCB.01476-09. Epub 2010 May 17.
5
DNA double-strand breaks promote methylation of histone H3 on lysine 9 and transient formation of repressive chromatin.
Proc Natl Acad Sci U S A. 2014 Jun 24;111(25):9169-74. doi: 10.1073/pnas.1403565111. Epub 2014 Jun 9.
6
Localized H3K36 methylation states define histone H4K16 acetylation during transcriptional elongation in Drosophila.
EMBO J. 2007 Dec 12;26(24):4974-84. doi: 10.1038/sj.emboj.7601926. Epub 2007 Nov 15.
7
SETD2-dependent H3K36me3 plays a critical role in epigenetic regulation of the HPV31 life cycle.
PLoS Pathog. 2018 Oct 12;14(10):e1007367. doi: 10.1371/journal.ppat.1007367. eCollection 2018 Oct.
8
The 19S proteasome positively regulates histone methylation at cytokine inducible genes.
Biochim Biophys Acta. 2009 Nov-Dec;1789(11-12):691-701. doi: 10.1016/j.bbagrm.2009.07.006. Epub 2009 Aug 3.

引用本文的文献

1
Emerging role of SETD2 in the development and function of immune cells.
Genes Dis. 2025 Apr 3;12(6):101622. doi: 10.1016/j.gendis.2025.101622. eCollection 2025 Nov.
4
6
8
Histone post-translational modification and the DNA damage response.
Genes Dis. 2022 Apr 22;10(4):1429-1444. doi: 10.1016/j.gendis.2022.04.002. eCollection 2023 Jul.
10
Targeted Profiling of Epitranscriptomic Reader, Writer, and Eraser Proteins Regulated by H3K36me3.
Anal Chem. 2023 Jun 27;95(25):9672-9679. doi: 10.1021/acs.analchem.3c01552. Epub 2023 Jun 9.

本文引用的文献

1
Translesion synthesis of O4-alkylthymidine lesions in human cells.
Nucleic Acids Res. 2016 Nov 2;44(19):9256-9265. doi: 10.1093/nar/gkw662. Epub 2016 Jul 27.
3
Arabidopsis MRG domain proteins bridge two histone modifications to elevate expression of flowering genes.
Nucleic Acids Res. 2014;42(17):10960-74. doi: 10.1093/nar/gku781. Epub 2014 Sep 2.
5
SETD2-dependent histone H3K36 trimethylation is required for homologous recombination repair and genome stability.
Cell Rep. 2014 Jun 26;7(6):2006-18. doi: 10.1016/j.celrep.2014.05.026. Epub 2014 Jun 12.
7
Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks.
Nat Struct Mol Biol. 2014 Apr;21(4):366-74. doi: 10.1038/nsmb.2796. Epub 2014 Mar 23.
8
Identification of functional cooperative mutations of SETD2 in human acute leukemia.
Nat Genet. 2014 Mar;46(3):287-93. doi: 10.1038/ng.2894. Epub 2014 Feb 9.
9
Discovery and saturation analysis of cancer genes across 21 tumour types.
Nature. 2014 Jan 23;505(7484):495-501. doi: 10.1038/nature12912. Epub 2014 Jan 5.
10
Double-strand break repair: 53BP1 comes into focus.
Nat Rev Mol Cell Biol. 2014 Jan;15(1):7-18. doi: 10.1038/nrm3719. Epub 2013 Dec 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验