Ye W, Bel-Brunon A, Catheline S, Combescure A, Rochette M
LaMCoS, INSA-Lyon, Université de Lyon, CNRS UMR 5259, Lyon, France.
ANSYS France, Montigny-le-Bretonneux, France.
Int J Numer Method Biomed Eng. 2018 Jan;34(1). doi: 10.1002/cnm.2901. Epub 2017 Jul 28.
In this study, visco-hyperelastic Landau's model, which is widely used in acoustical physic field, is introduced into a finite element formulation. It is designed to model the nonlinear behaviour of finite amplitude shear waves in soft solids, typically, in biological tissues. This law is used in finite element models based on elastography, experiments reported in Jacob et al, the simulations results show a good agreement with the experimental study: It is observed in both that a plane shear wave generates only odd harmonics and a nonplane wave generates both odd and even harmonics in the spectral domain. In the second part, a parametric study is performed to analyse the influence of different factors on the generation of odd harmonics of plane wave. A quantitative relation is fitted between the odd harmonic amplitudes and the non-linear elastic parameter of Landau's model, which provides a practical guideline to identify the non-linearity of homogeneous tissues using elastography experiment.
在本研究中,将声学物理领域广泛使用的粘弹性超弹性朗道模型引入有限元公式。其目的是模拟软固体(通常是生物组织)中有限振幅剪切波的非线性行为。该定律用于基于弹性成像的有限元模型,雅各布等人报道的实验中,模拟结果与实验研究显示出良好的一致性:在频谱域中观察到,平面剪切波仅产生奇次谐波,而非平面波产生奇次和偶次谐波。在第二部分中,进行了参数研究,以分析不同因素对平面波奇次谐波产生的影响。拟合了奇次谐波振幅与朗道模型非线性弹性参数之间的定量关系,这为利用弹性成像实验识别均匀组织的非线性提供了实用指南。