Suppr超能文献

焦线区域声辐射力诱导的准平面剪切波传播:一项模拟研究。

Quasi-plane shear wave propagation induced by acoustic radiation force with a focal line region: a simulation study.

作者信息

Guo Min, Abbott Derek, Lu Minhua, Liu Huafeng

机构信息

State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China.

School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia.

出版信息

Australas Phys Eng Sci Med. 2016 Mar;39(1):187-97. doi: 10.1007/s13246-015-0417-7. Epub 2016 Jan 14.

Abstract

Shear wave propagation speed has been regarded as an attractive indicator for quantitatively measuring the intrinsic mechanical properties of soft tissues. While most existing techniques use acoustic radiation force (ARF) excitation with focal spot region based on linear array transducers, we try to employ a special ARF with a focal line region and apply it to viscoelastic materials to create shear waves. First, a two-dimensional capacitive micromachined ultrasonic transducer with 64 × 128 fully controllable elements is realised and simulated to generate this special ARF. Then three-dimensional finite element models are developed to simulate the resulting shear wave propagation through tissue phantom materials. Three different phantoms are explored in our simulation study using: (a) an isotropic viscoelastic medium, (b) within a cylindrical inclusion, and (c) a transverse isotropic viscoelastic medium. For each phantom, the ARF creates a quasi-plane shear wave which has a preferential propagation direction perpendicular to the focal line excitation. The propagation of the quasi-plane shear wave is investigated and then used to reconstruct shear moduli sequentially after the estimation of shear wave speed. In the phantom with a transverse isotropic viscoelastic medium, the anisotropy results in maximum speed parallel to the fiber direction and minimum speed perpendicular to the fiber direction. The simulation results show that the line excitation extends the displacement field to obtain a large imaging field in comparison with spot excitation, and demonstrate its potential usage in measuring the mechanical properties of anisotropic tissues.

摘要

剪切波传播速度已被视为定量测量软组织固有力学特性的一个有吸引力的指标。虽然大多数现有技术使用基于线性阵列换能器的聚焦光斑区域的声辐射力(ARF)激发,但我们尝试采用具有聚焦线区域的特殊ARF并将其应用于粘弹性材料以产生剪切波。首先,实现并模拟了一个具有64×128个完全可控元件的二维电容式微机械超声换能器,以产生这种特殊的ARF。然后开发三维有限元模型来模拟产生的剪切波在组织仿体材料中的传播。在我们的模拟研究中探索了三种不同的仿体,分别使用:(a)各向同性粘弹性介质,(b)在圆柱形内含物内,以及(c)横向各向同性粘弹性介质。对于每个仿体,ARF产生一个准平面剪切波,其具有垂直于聚焦线激发的优先传播方向。研究了准平面剪切波的传播,然后在估计剪切波速度后依次用于重建剪切模量。在具有横向各向同性粘弹性介质的仿体中,各向异性导致平行于纤维方向的速度最大,垂直于纤维方向的速度最小。模拟结果表明,与光斑激发相比,线激发扩展了位移场以获得大的成像场,并证明了其在测量各向异性组织力学特性方面的潜在用途。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验