Suppr超能文献

神经胶质递质D-丝氨酸促进突触成熟和轴突稳定。

The Gliotransmitter d-Serine Promotes Synapse Maturation and Axonal Stabilization .

作者信息

Van Horn Marion R, Strasser Arielle, Miraucourt Lois S, Pollegioni Loredano, Ruthazer Edward S

机构信息

Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada.

Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell'Insubria, 21100 Varese, Italy, and.

出版信息

J Neurosci. 2017 Jun 28;37(26):6277-6288. doi: 10.1523/JNEUROSCI.3158-16.2017. Epub 2017 May 26.

Abstract

The NMDAR is thought to play a key role in the refinement of connectivity in developing neural circuits. Pharmacological blockade or genetic loss-of-function manipulations that prevent NMDAR function during development result in the disorganization of topographic axonal projections. However, because NMDARs contribute to overall glutamatergic neurotransmission, such loss-of-function experiments fail to adequately distinguish between the roles played by NMDARs and neural activity in general. The gliotransmitter d-serine is a coagonist of the NMDAR that is required for NMDAR channel opening, but which cannot mediate neurotransmission on its own. Here we demonstrate that acute administration of d-serine has no immediate effect on glutamate release or AMPA-mediated neurotransmission. We show that endogenous d-serine is normally present below saturating levels in the developing visual system of the tadpole. Using an amperometric enzymatic biosensor, we demonstrate that glutamatergic activation elevates ambient endogenous d-serine levels in the optic tectum. Chronically elevating levels of d-serine promoted synaptic maturation and resulted in the hyperstabilization of developing axon branches in the tadpole visual system. Conversely, treatment with an enzyme that degrades endogenous d-serine resulted in impaired synaptic maturation. Despite the reduction in axon arbor complexity seen in d-serine-treated animals, tectal neuron visual receptive fields were expanded, suggesting a failure to prune divergent retinal inputs. Together, these findings positively implicate NMDAR-mediated neurotransmission in developmental synapse maturation and the stabilization of axonal inputs and reveal a potential role for d-serine as an endogenous modulator of circuit refinement. Activation of NMDARs is critical for the activity-dependent development and maintenance of highly organized topographic maps. d-Serine, a coagonist of the NMDAR, plays a significant role in modulating NMDAR-mediated synaptic transmission and plasticity in many brain areas. However, it remains unknown whether d-serine participates in the establishment of precise neuronal connections during development. Using an model, we show that glutamate receptor activation can evoke endogenous d-serine release, which promotes glutamatergic synapse maturation and stabilizes axonal structural and functional inputs. These results reveal a pivotal modulatory role for d-serine in neurodevelopment.

摘要

N-甲基-D-天冬氨酸受体(NMDAR)被认为在发育中的神经回路连接精细化过程中起关键作用。在发育过程中,药理学阻断或基因功能丧失操作若阻止NMDAR发挥功能,会导致轴突拓扑投射紊乱。然而,由于NMDAR参与整体谷氨酸能神经传递,此类功能丧失实验无法充分区分NMDAR和一般神经活动所起的作用。神经胶质递质D-丝氨酸是NMDAR的协同激动剂,是NMDAR通道开放所必需的,但它自身无法介导神经传递。在此,我们证明急性给予D-丝氨酸对谷氨酸释放或AMPA介导的神经传递没有即时影响。我们发现,在蝌蚪发育中的视觉系统中,内源性D-丝氨酸通常以低于饱和水平的浓度存在。使用安培型酶生物传感器,我们证明谷氨酸能激活会提高视顶盖中环境内源性D-丝氨酸水平。长期提高D-丝氨酸水平可促进突触成熟,并导致蝌蚪视觉系统中发育中的轴突分支超稳定。相反,用降解内源性D-丝氨酸的酶进行处理会导致突触成熟受损。尽管在D-丝氨酸处理的动物中观察到轴突分支复杂性降低,但顶盖神经元的视觉感受野却扩大了,这表明未能修剪发散的视网膜输入。总之,这些发现明确表明NMDAR介导的神经传递在发育性突触成熟和轴突输入稳定中起作用,并揭示了D-丝氨酸作为回路精细化内源性调节剂的潜在作用。NMDAR的激活对于高度组织化拓扑图谱的活动依赖性发育和维持至关重要。D-丝氨酸作为NMDAR的协同激动剂,在调节许多脑区中NMDAR介导的突触传递和可塑性方面发挥重要作用。然而,D-丝氨酸在发育过程中是否参与精确神经元连接的建立仍不清楚。使用一个模型,我们表明谷氨酸受体激活可引发内源性D-丝氨酸释放,这促进谷氨酸能突触成熟并稳定轴突的结构和功能输入。这些结果揭示了D-丝氨酸在神经发育中的关键调节作用。

相似文献

1
The Gliotransmitter d-Serine Promotes Synapse Maturation and Axonal Stabilization .
J Neurosci. 2017 Jun 28;37(26):6277-6288. doi: 10.1523/JNEUROSCI.3158-16.2017. Epub 2017 May 26.
2
BDNF stabilizes synapses and maintains the structural complexity of optic axons in vivo.
Development. 2005 Oct;132(19):4285-98. doi: 10.1242/dev.02017. Epub 2005 Sep 1.
4
Identity of the NMDA receptor coagonist is synapse specific and developmentally regulated in the hippocampus.
Proc Natl Acad Sci U S A. 2015 Jan 13;112(2):E204-13. doi: 10.1073/pnas.1416668112. Epub 2014 Dec 30.
5
D-Serine Signaling and NMDAR-Mediated Synaptic Plasticity Are Regulated by System A-Type of Glutamine/D-Serine Dual Transporters.
J Neurosci. 2020 Aug 19;40(34):6489-6502. doi: 10.1523/JNEUROSCI.0801-20.2020. Epub 2020 Jul 13.
7
NMDA receptor currents suppress synapse formation on sprouting axons in vivo.
J Neurosci. 2005 Feb 2;25(5):1291-303. doi: 10.1523/JNEUROSCI.4063-04.2005.
9
D-serine regulation of NMDA receptor activity.
Sci STKE. 2006 Oct 10;2006(356):pe41. doi: 10.1126/stke.3562006pe41.
10
D-Serine and Serine Racemase Are Associated with PSD-95 and Glutamatergic Synapse Stability.
Front Cell Neurosci. 2016 Feb 25;10:34. doi: 10.3389/fncel.2016.00034. eCollection 2016.

引用本文的文献

1
Mutations in PTPN11 could lead to a congenital myasthenic syndrome phenotype: a Noonan syndrome case series.
J Neurol. 2024 Mar;271(3):1331-1341. doi: 10.1007/s00415-023-12070-w. Epub 2023 Nov 4.
2
Capturing a rising star: the emerging role of astrocytes in neural circuit wiring and plasticity-lessons from the visual system.
Neurophotonics. 2023 Oct;10(4):044408. doi: 10.1117/1.NPh.10.4.044408. Epub 2023 Sep 26.
4
The connection between innervation and metabolic rearrangements in pancreatic cancer through serine.
Front Oncol. 2022 Dec 13;12:992927. doi: 10.3389/fonc.2022.992927. eCollection 2022.
5
Glia Regulate the Development, Function, and Plasticity of the Visual System From Retina to Cortex.
Front Neural Circuits. 2022 Feb 1;16:826664. doi: 10.3389/fncir.2022.826664. eCollection 2022.
6
Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels.
Pharmacol Rev. 2021 Oct;73(4):298-487. doi: 10.1124/pharmrev.120.000131.
7
Electrophysiological Recording for Study of Retinotectal Circuitry.
Cold Spring Harb Protoc. 2021 Jun 1;2021(6):pdb.prot106880. doi: 10.1101/pdb.prot106880.
8
From Neural Tube Formation Through the Differentiation of Spinal Cord Neurons: Ion Channels in Action During Neural Development.
Front Mol Neurosci. 2020 Apr 24;13:62. doi: 10.3389/fnmol.2020.00062. eCollection 2020.
9
Trans-Synaptic Signaling through the Glutamate Receptor Delta-1 Mediates Inhibitory Synapse Formation in Cortical Pyramidal Neurons.
Neuron. 2019 Dec 18;104(6):1081-1094.e7. doi: 10.1016/j.neuron.2019.09.027. Epub 2019 Nov 5.
10
Presenilin Regulates Retinotectal Synapse Formation through EphB2 Receptor Processing.
Dev Neurobiol. 2018 Dec;78(12):1171-1190. doi: 10.1002/dneu.22638. Epub 2018 Oct 10.

本文引用的文献

1
Rules for Shaping Neural Connections in the Developing Brain.
Front Neural Circuits. 2017 Jan 10;10:111. doi: 10.3389/fncir.2016.00111. eCollection 2016.
3
D-Serine and Glycine Differentially Control Neurotransmission during Visual Cortex Critical Period.
PLoS One. 2016 Mar 22;11(3):e0151233. doi: 10.1371/journal.pone.0151233. eCollection 2016.
4
Synaptic Integration of Adult-Born Hippocampal Neurons Is Locally Controlled by Astrocytes.
Neuron. 2015 Dec 2;88(5):957-972. doi: 10.1016/j.neuron.2015.10.037. Epub 2015 Nov 19.
5
Time and space profiling of NMDA receptor co-agonist functions.
J Neurochem. 2015 Oct;135(2):210-25. doi: 10.1111/jnc.13204. Epub 2015 Aug 3.
6
Role for neonatal D-serine signaling: prevention of physiological and behavioral deficits in adult Pick1 knockout mice.
Mol Psychiatry. 2016 Mar;21(3):386-93. doi: 10.1038/mp.2015.61. Epub 2015 May 26.
7
d-serine levels in Alzheimer's disease: implications for novel biomarker development.
Transl Psychiatry. 2015 May 5;5(5):e561. doi: 10.1038/tp.2015.52.
9
Identity of the NMDA receptor coagonist is synapse specific and developmentally regulated in the hippocampus.
Proc Natl Acad Sci U S A. 2015 Jan 13;112(2):E204-13. doi: 10.1073/pnas.1416668112. Epub 2014 Dec 30.
10
The NMDA receptor 'glycine modulatory site' in schizophrenia: D-serine, glycine, and beyond.
Curr Opin Pharmacol. 2015 Feb;20:109-15. doi: 10.1016/j.coph.2014.12.004. Epub 2014 Dec 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验