Tezze Caterina, Romanello Vanina, Desbats Maria Andrea, Fadini Gian Paolo, Albiero Mattia, Favaro Giulia, Ciciliot Stefano, Soriano Maria Eugenia, Morbidoni Valeria, Cerqua Cristina, Loefler Stefan, Kern Helmut, Franceschi Claudio, Salvioli Stefano, Conte Maria, Blaauw Bert, Zampieri Sandra, Salviati Leonardo, Scorrano Luca, Sandri Marco
Venetian Institute of Molecular Medicine, via Orus 2, 35129 Padova, Italy; Department of Biomedical Science, University of Padova, via G. Colombo 3, 35100 Padova, Italy.
Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, Via Giustiniani 3, 35128 Padova, Italy.
Cell Metab. 2017 Jun 6;25(6):1374-1389.e6. doi: 10.1016/j.cmet.2017.04.021. Epub 2017 May 25.
Mitochondrial dysfunction occurs during aging, but its impact on tissue senescence is unknown. Here, we find that sedentary but not active humans display an age-related decline in the mitochondrial protein, optic atrophy 1 (OPA1), that is associated with muscle loss. In adult mice, acute, muscle-specific deletion of Opa1 induces a precocious senescence phenotype and premature death. Conditional and inducible Opa1 deletion alters mitochondrial morphology and function but not DNA content. Mechanistically, the ablation of Opa1 leads to ER stress, which signals via the unfolded protein response (UPR) and FoxOs, inducing a catabolic program of muscle loss and systemic aging. Pharmacological inhibition of ER stress or muscle-specific deletion of FGF21 compensates for the loss of Opa1, restoring a normal metabolic state and preventing muscle atrophy and premature death. Thus, mitochondrial dysfunction in the muscle can trigger a cascade of signaling initiated at the ER that systemically affects general metabolism and aging.
线粒体功能障碍在衰老过程中出现,但其对组织衰老的影响尚不清楚。在此,我们发现久坐不动而非活跃的人类,其线粒体蛋白视神经萎缩蛋白1(OPA1)会出现与年龄相关的下降,这与肌肉流失有关。在成年小鼠中,急性、肌肉特异性缺失Opa1会诱导早熟的衰老表型和过早死亡。条件性和诱导性Opa1缺失会改变线粒体形态和功能,但不会改变DNA含量。从机制上讲,Opa1的缺失会导致内质网应激,通过未折叠蛋白反应(UPR)和FoxOs发出信号,诱导肌肉流失和全身衰老的分解代谢程序。内质网应激的药理学抑制或FGF21的肌肉特异性缺失可补偿Opa1的缺失,恢复正常代谢状态并防止肌肉萎缩和过早死亡。因此,肌肉中的线粒体功能障碍可触发在内质网启动的一系列信号传导,从而系统性地影响整体代谢和衰老。