Mukherjee Arijit, Teyssandier Joan, Hennrich Gunther, De Feyter Steven, Mali Kunal S
Division of Molecular Imaging and Photonics , Department of Chemistry , KU Leuven-University of Leuven , Celestijnenlaan 200F , B3001 Leuven , Belgium . Email:
Universidad Autonoma de Madrid , Cantoblanco , 28049 Madrid , Spain.
Chem Sci. 2017 May 1;8(5):3759-3769. doi: 10.1039/c7sc00129k. Epub 2017 Mar 16.
Two-dimensional (2D) crystallization on solid surfaces is governed by a subtle balance of supramolecular and interfacial interactions. However, these subtle interactions often make the prediction of supramolecular structure from the molecular structure impossible. As a consequence, surface-based 2D crystallization has often been studied on a case-by-case basis, which hinders the identification of structure-determining relationships between different self-assembling systems. Here we begin the discussion on such structure-determining relationships by comparing the 2D crystallization of two identical building blocks based on a 1,3,5-tris(pyridine-4-ylethynyl)benzene unit at the solution-solid interface. The concepts of supramolecular synthons and structural landscapes are introduced in the context of 2D crystallization on surfaces to identify common structural elements. The systems are characterized using scanning tunneling microscopy (STM). This strategy involves carrying out minor structural modifications on the parent compound to access supramolecular patterns that are otherwise not obtained. We demonstrate that this chemical perturbation strategy translates equally well for 2D co-crystallization experiments with halogen bond donors yielding porous bi-component networks. The holistic approach described here represents a stepping stone towards gaining predictive power over the 2D crystallization of molecules on solid surfaces.
固体表面的二维(2D)结晶受超分子和界面相互作用的微妙平衡支配。然而,这些微妙的相互作用常常使得从分子结构预测超分子结构变得不可能。因此,基于表面的二维结晶通常是逐个案例进行研究的,这阻碍了对不同自组装系统之间结构决定关系的识别。在这里,我们通过比较基于1,3,5-三(吡啶-4-基乙炔基)苯单元的两个相同构建块在溶液-固体界面的二维结晶,开始讨论这种结构决定关系。在表面二维结晶的背景下引入超分子合成子和结构景观的概念,以识别常见的结构元素。使用扫描隧道显微镜(STM)对这些系统进行表征。该策略涉及对母体化合物进行微小的结构修饰,以获得否则无法获得的超分子图案。我们证明,这种化学扰动策略同样适用于与卤素键供体进行的二维共结晶实验,从而产生多孔双组分网络。这里描述的整体方法是朝着获得对固体表面分子二维结晶的预测能力迈出的一步。