Nilges M, Gronenborn A M, Brünger A T, Clore G M
Max-Planck Institut für Biochemie, Martinsried bei München, FRG.
Protein Eng. 1988 Apr;2(1):27-38. doi: 10.1093/protein/2.1.27.
An automated method, based on the principle of simulated annealing, is presented for determining the three-dimensional structures of proteins on the basis of short (less than 5 A) interproton distance data derived from nuclear Overhauser enhancement (NOE) measurements. The method makes use of Newton's equations of motion to increase temporarily the temperature of the system in order to search for the global minimum region of a target function comprising purely geometric restraints. These consist of interproton distances supplemented by bond lengths, bond angles, planes and soft van der Waals repulsion terms. The latter replace the dihedral, van der Waals, electrostatic and hydrogen-bonding potentials of the empirical energy function used in molecular dynamics simulations. The method presented involves the implementation of a number of innovations over our previous restrained molecular dynamics approach [Clore, G.M., Brünger, A.T., Karplus, M. and Gronenborn, A.M. (1986) J. Mol. Biol., 191, 523-551]. These include the development of a new effective potential for the interproton distance restraints whose functional form is dependent on the magnitude of the difference between calculated and target values, and the design and implementation of robust and fully automatic protocol. The method is tested on three systems: the model system crambin (46 residues) using X-ray structure derived interproton distance restraints, and potato carboxypeptidase inhibitor (CPI; 39 residues) and barley serine proteinase inhibitor 2 (BSPI-2; 64 residues) using experimentally derived interproton distance restraints. Calculations were carried out starting from the extended strands which had atomic r.m.s. differences of 57, 38 and 33 A with respect to the crystal structures of BSPI-2, crambin and CPI respectively. Unbiased sampling of the conformational space consistent with the restraints was achieved by varying the random number seed used to assign the initial velocities. This ensures that the different trajectories diverge during the early stages of the simulations and only converge later as more and more interproton distance restraints are satisfied. The average backbone atomic r.m.s. difference between the converged structures is 2.2 +/- 0.3 A for crambin (nine structures), 2.4 +/- 0.3 A for CPI (eight structures) and 2.5 +/- 0.2 A for BSPI-2 (five structures). The backbone atomic r.m.s. difference between the mean structures derived by averaging the coordinates of the converged structures and the corresponding X-ray structures is 1.2 A for crambin, 1.6 A for CPI and 1.7 A for BSPI-2.
本文提出了一种基于模拟退火原理的自动化方法,用于根据通过核Overhauser效应(NOE)测量得到的短(小于5埃)质子间距离数据来确定蛋白质的三维结构。该方法利用牛顿运动方程来临时提高系统温度,以便搜索包含纯几何约束的目标函数的全局最小区域。这些约束包括质子间距离,并辅以键长、键角、平面和软范德华排斥项。后者取代了分子动力学模拟中使用的经验能量函数中的二面角、范德华、静电和氢键势。所提出的方法在我们之前的受限分子动力学方法[Clore, G.M., Brünger, A.T., Karplus, M.和Gronenborn, A.M. (1986) J. Mol. Biol., 191, 523 - 551]的基础上进行了多项创新。这些创新包括开发一种新的质子间距离约束有效势,其函数形式取决于计算值与目标值之间差异的大小,以及设计和实现稳健且完全自动化的协议。该方法在三个系统上进行了测试:使用X射线结构推导的质子间距离约束的模型系统克拉宾(46个残基),以及使用实验推导的质子间距离约束的马铃薯羧肽酶抑制剂(CPI;39个残基)和大麦丝氨酸蛋白酶抑制剂2(BSPI - 2;64个残基)。计算从伸展链开始,这些伸展链相对于BSPI - 2、克拉宾和CPI的晶体结构的原子均方根偏差分别为57、38和33埃。通过改变用于分配初始速度的随机数种子,实现了与约束一致的构象空间的无偏采样。这确保了不同的轨迹在模拟的早期阶段发散,并且仅在越来越多的质子间距离约束得到满足时才会收敛。对于克拉宾(九个结构),收敛结构之间的平均主链原子均方根偏差为2.2±0.3埃,对于CPI(八个结构)为2.4±0.3埃,对于BSPI - 2(五个结构)为2.5±0.2埃。通过对收敛结构的坐标进行平均得到的平均结构与相应X射线结构之间的主链原子均方根偏差,对于克拉宾为1.2埃,对于CPI为1.6埃,对于BSPI - 2为1.7埃。