Gollihue Jenna L, Patel Samir P, Mashburn Charlie, Eldahan Khalid C, Sullivan Patrick G, Rabchevsky Alexander G
University of Kentucky, Department of Physiology, Lexington, KY 40536-0509, United States; University of Kentucky, Spinal Cord & Brain Injury Research Center, Lexington, KY 40536-0509, United States.
University of Kentucky, Spinal Cord & Brain Injury Research Center, Lexington, KY 40536-0509, United States.
J Neurosci Methods. 2017 Aug 1;287:1-12. doi: 10.1016/j.jneumeth.2017.05.023. Epub 2017 May 26.
Proper mitochondrial function is essential to maintain normal cellular bioenergetics and ionic homeostasis. In instances of severe tissue damage, such as traumatic brain and spinal cord injury, mitochondria become damaged and unregulated leading to cell death. The relatively unexplored field of mitochondrial transplantation following neurotrauma is based on the theory that replacing damaged mitochondria with exogenous respiratory-competent mitochondria can restore overall tissue bioenergetics.
We optimized techniques in vitro to prepare suspensions of isolated mitochondria for transplantation in vivo. Mitochondria isolated from cell culture were genetically labeled with turbo-green fluorescent protein (tGFP) for imaging and tracking purposes in vitro and in vivo.
We used time-lapse confocal imaging to reveal the incorporation of exogenous fluorescently-tagged mitochondria into PC-12 cells after brief co-incubation. Further, we show that mitochondria can be injected into the spinal cord with immunohistochemical evidence of host cellular uptake within 24h.
Our methods utilize transgenic fluorescent labeling of mitochondria for a nontoxic and photostable alternative to other labeling methods. Substrate addition to isolated mitochondria helped to restore state III respiration at room temperature prior to transplantation. These experiments delineate refined methods to use transgenic cell lines for the purpose of isolating well coupled mitochondria that have a permanent fluorescent label that allows real time tracking of transplanted mitochondria in vitro, as well as imaging in situ.
These techniques lay the foundation for testing the potential therapeutic effects of mitochondrial transplantation following spinal cord injury and other animal models of neurotrauma.
正常的线粒体功能对于维持正常的细胞生物能量学和离子稳态至关重要。在严重组织损伤的情况下,如创伤性脑损伤和脊髓损伤,线粒体受损且功能失调,导致细胞死亡。神经创伤后线粒体移植这一相对未被充分探索的领域基于这样一种理论,即用外源性具有呼吸功能的线粒体替代受损线粒体可以恢复整体组织生物能量学。
我们在体外优化了技术,以制备用于体内移植的分离线粒体悬浮液。从细胞培养物中分离的线粒体用turbo -绿色荧光蛋白(tGFP)进行基因标记,以便在体外和体内进行成像和追踪。
我们使用延时共聚焦成像揭示了短暂共孵育后外源性荧光标记的线粒体被PC - 12细胞摄取。此外,我们表明线粒体可以注射到脊髓中,并有免疫组织化学证据表明在24小时内宿主细胞摄取了线粒体。
我们的方法利用线粒体的转基因荧光标记,作为其他标记方法的无毒且光稳定的替代方法。在分离的线粒体中添加底物有助于在移植前的室温下恢复状态III呼吸。这些实验描绘了使用转基因细胞系分离耦合良好的线粒体的精细方法,这些线粒体具有永久荧光标记,可在体外实时追踪移植的线粒体,并进行原位成像。
这些技术为测试脊髓损伤及其他神经创伤动物模型中线粒体移植的潜在治疗效果奠定了基础。