Suppr超能文献

线粒体移植对脊髓损伤后生物能量学、细胞摄取和功能恢复的影响。

Effects of Mitochondrial Transplantation on Bioenergetics, Cellular Incorporation, and Functional Recovery after Spinal Cord Injury.

机构信息

1 Department of Physiology, University of Kentucky , Lexington, Kentucky.

2 Spinal Cord & Brain Injury Research Center, University of Kentucky , Lexington, Kentucky.

出版信息

J Neurotrauma. 2018 Aug 1;35(15):1800-1818. doi: 10.1089/neu.2017.5605. Epub 2018 Apr 30.

Abstract

Our previous studies reported that pharmacological maintenance of mitochondrial bioenergetics after experimental spinal cord injury (SCI) provided functional neuroprotection. Recent evidence indicates that endogenous mitochondrial transfer is neuroprotective as well, and, therefore, we extended these studies with a novel approach to transplanting exogenous mitochondria into the injured rat spinal cord. Using a rat model of L1/L2 contusion SCI, we herein report that transplantation of exogenous mitochondria derived from either cell culture or syngeneic leg muscle maintained acute bioenergetics of the injured spinal cord in a concentration-dependent manner. Moreover, transplanting transgenically labeled turbo green fluorescent (tGFP) PC12-derived mitochondria allowed for visualization of their incorporation in both a time-dependent and cell-specific manner at 24 h, 48 h, and 7 days post-injection. tGFP mitochondria co-localized with multiple resident cell types, although they were absent in neurons. Despite their contribution to the maintenance of normal bioenergetics, mitochondrial transplantation did not yield long-term functional neuroprotection as assessed by overall tissue sparing or recovery of motor and sensory functions. These experiments are the first to investigate mitochondrial transplantation as a therapeutic approach to treating spinal cord injury. Our initial bioenergetic results are encouraging, and although they did not translate into improved long-term outcome measures, caveats and technical hurdles are discussed that can be addressed in future studies to potentially increase long-term efficacy of transplantation strategies.

摘要

我们之前的研究报告表明,实验性脊髓损伤 (SCI) 后维持线粒体生物能量学的药理学方法提供了功能神经保护。最近的证据表明,内源性线粒体转移也具有神经保护作用,因此,我们通过一种将外源性线粒体移植到损伤的大鼠脊髓中的新方法扩展了这些研究。使用 L1/L2 挫伤 SCI 的大鼠模型,我们在此报告,源自细胞培养或同基因腿肌的外源性线粒体的移植以浓度依赖的方式维持损伤脊髓的急性生物能量学。此外,移植转基因标记的 turbo 绿色荧光 (tGFP) PC12 衍生的线粒体允许在注射后 24、48 和 7 天以时间和细胞特异性的方式可视化它们的掺入。tGFP 线粒体与多种常驻细胞类型共定位,尽管它们在神经元中不存在。尽管线粒体移植有助于维持正常的生物能量学,但正如通过总体组织保留或运动和感觉功能的恢复来评估的那样,它并没有产生长期的功能神经保护。这些实验是首次研究线粒体移植作为治疗脊髓损伤的治疗方法。我们最初的生物能量学结果令人鼓舞,尽管它们没有转化为改善长期预后指标,但讨论了注意事项和技术障碍,可以在未来的研究中解决这些问题,以提高移植策略的长期疗效。

相似文献

引用本文的文献

本文引用的文献

2
Prospects for therapeutic mitochondrial transplantation.治疗性线粒体移植的前景。
Mitochondrion. 2017 Jul;35:70-79. doi: 10.1016/j.mito.2017.05.007. Epub 2017 May 19.
3
9
Vascularisation of the central nervous system.中枢神经系统的血管形成
Mech Dev. 2015 Nov;138 Pt 1:26-36. doi: 10.1016/j.mod.2015.07.001. Epub 2015 Jul 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验