Sanche S, Sheehan N, Mesplède T, Wainberg M A, Li J, Nekka F
Faculté de Pharmacie de l'Université de Montréal, Montréal, Québec, Canada.
Chronic Viral Illness Service, McGill University Health Centre, Montréal, Québec, Canada.
CPT Pharmacometrics Syst Pharmacol. 2017 Jul;6(7):469-476. doi: 10.1002/psp4.12200. Epub 2017 May 27.
Preventing virological failure following HIV treatment remains a difficult task that is further complicated by the emergence of drug resistance. We have developed a mathematical model able to explain and predict HIV virological outcomes for various compounds and patients' drug intake patterns. Compared to current approaches, this model considers, altogether, drug penetration into lymph nodes, a refined adherence representation accounting for the propensity for long drug holidays, population pharmacokinetic and pharmacodynamic variability, drug interaction, and crossresistance. In silico results are consistent with clinical observations for treatment with efavirenz, efavirenz in association with tenofovir DF and emtricitabine, or boosted darunavir. Our findings indicate that limited lymph node drug penetration can account for a large proportion of cases of virological failure and drug resistance. Since a limited amount of information is required by the model, it can be of use in the process of drug discovery and to guide clinical treatment strategies.
在艾滋病病毒治疗后预防病毒学失败仍然是一项艰巨的任务,而耐药性的出现使这一任务更加复杂。我们开发了一个数学模型,能够解释和预测针对各种化合物及患者药物摄入模式的艾滋病病毒病毒学结果。与当前方法相比,该模型综合考虑了药物在淋巴结中的渗透、一种更精细的依从性表示法(该表示法考虑了长时间停药的倾向)、群体药代动力学和药效学变异性、药物相互作用以及交叉耐药性。计算机模拟结果与依法韦仑、依法韦仑联合替诺福韦酯和恩曲他滨或增强型达芦那韦治疗的临床观察结果一致。我们的研究结果表明,有限的淋巴结药物渗透可导致很大一部分病毒学失败和耐药病例。由于该模型所需信息有限,它可用于药物研发过程并指导临床治疗策略。