Suppr超能文献

采用多层次因子结构或多重插补方法进行神经心理学评估的多元规范比较。

Multivariate normative comparisons for neuropsychological assessment by a multilevel factor structure or multiple imputation approach.

机构信息

Department of Psychology, University of Amsterdam.

出版信息

Psychol Assess. 2018 Apr;30(4):436-449. doi: 10.1037/pas0000489. Epub 2017 May 29.

Abstract

Neuropsychologists administer neuropsychological tests to decide whether a patient is cognitively impaired. This clinical decision is made by comparing a patient's scores to those of healthy participants in a normative sample. In a multivariate normative comparison, a patient's entire profile of scores is compared to scores in a normative sample. Such a multivariate comparison has been shown to improve clinical decision making. However, it requires a multivariate normative data set, which often is unavailable. To obtain such a multivariate normative data set, the authors propose to aggregate healthy control group data from existing neuropsychological studies. As not all studies administered the same tests, this aggregated database will contain substantial amounts of missing data. The authors therefore propose two solutions: multiple imputation and factor modeling. Simulation studies show that factor modeling is preferred over multiple imputation, provided that the factor model is adequately specified. This factor modeling approach will therefore allow routine use of multivariate normative comparisons, enabling more accurate clinical decision making. (PsycINFO Database Record

摘要

神经心理学家进行神经心理学测试,以确定患者是否存在认知障碍。这一临床决策是通过将患者的分数与正常样本中的健康参与者的分数进行比较来做出的。在多元正态比较中,患者的整个分数分布与正常样本中的分数进行比较。这种多元比较已被证明可以改善临床决策。然而,它需要一个多元正态数据集,而这通常是不可用的。为了获得这样的多元正态数据集,作者建议从现有的神经心理学研究中聚合健康对照组的数据。由于并非所有研究都进行了相同的测试,因此这个聚合的数据库将包含大量缺失的数据。因此,作者提出了两种解决方案:多重插补和因子建模。模拟研究表明,因子建模优于多重插补,前提是因子模型得到了充分的说明。因此,这种因子建模方法将允许常规使用多元正态比较,从而实现更准确的临床决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验