Suppr超能文献

关于神经心理学中常模样本的“最佳”规模:当使用常模数据来量化神经心理学测试分数的排名时捕捉不确定性

On the "optimal" size for normative samples in neuropsychology: capturing the uncertainty when normative data are used to quantify the standing of a neuropsychological test score.

作者信息

Crawford John R, Garthwaite Paul H

机构信息

School of Psychology, College of life Sciences and Medicine, King's College, University of Aberdeen, United Kingdom.

出版信息

Child Neuropsychol. 2008 Mar;14(2):99-117. doi: 10.1080/09297040801894709.

Abstract

Bridges and Holler (2007) have provided a useful reminder that normative data are fallible. Unfortunately, however, their paper misleads neuropsychologists as to the nature and extent of the problem. We show that the uncertainty attached to the estimated z score and percentile rank of a given raw score is much larger than they report and that it varies as a function of the extremity of the raw score. Methods for quantifying the uncertainty associated with normative data are described and used to illustrate the issues involved. A computer program is provided that, on entry of a normative sample mean, standard deviation, and sample size, provides point and interval estimates of percentiles and z scores for raw scores referred to these normative data. The methods and program provide neuropsychologists with a means of evaluating the adequacy of existing norms and will be useful for those planning normative studies.

摘要

布里奇斯和霍勒(2007年)适时提醒了常模数据是容易出错的。然而,遗憾的是,他们的论文在问题的本质和程度上误导了神经心理学家。我们表明,给定原始分数的估计z分数和百分等级所附带的不确定性比他们报告的要大得多,并且它会随着原始分数的极端程度而变化。本文描述了量化与常模数据相关的不确定性的方法,并用于说明其中涉及的问题。提供了一个计算机程序,在输入常模样本均值、标准差和样本量后,可为参照这些常模数据的原始分数提供百分位数和z分数的点估计和区间估计。这些方法和程序为神经心理学家提供了一种评估现有常模充分性的手段,对那些计划进行常模研究的人将很有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验