Jung Julie, Puget Marin, Cador Olivier, Bernot Kevin, Calzado Carmen J, Le Guennic Boris
Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS, Université de Rennes 1, 263 Avenue du Général Leclerc, 35042 Cedex Rennes, France.
INSA Rennes, Institut des Sciences Chimiques de Rennes, UMR CNRS 6226, 35708 Rennes, France.
Inorg Chem. 2017 Jun 19;56(12):6788-6801. doi: 10.1021/acs.inorgchem.6b02952. Epub 2017 May 30.
We report a combined theoretical and experimental investigation of the exchange interactions governing the magnetic behavior of a series of nitronyl nitroxide (NIT)-based Y(III) complexes, i.e., Y(hfac)(NIT-R) with R = PhOPh (1), PhOEt (2), and PhOMe (3a, 3b). Even though some of these complexes or their Dy(III) parents were previously described in the literature [ Zhao et al. Transition Met. Chem. 2006 , 31 , 593 ; Bernot et al. J. Am. Chem. Soc. 2009 , 131 , 5573 ], their synthesis procedure as well as their structural and magnetic properties were completely reconsidered. Depending on the nature of R and the crystallization conditions, Y(hfac)(NIT-R) units can be organized as supramolecular dimers or linear or orthogonal chains. Such structural diversity within the series induces extremely different magnetic behaviors. The observed behaviors are rationalized by state-of-the-art wave function-based quantum-chemical approaches (CASSCF/DDCI) that demonstrate the existence of not only effective intramolecular interactions between the NIT-R radical ligands of an isolated Y(hfac)(NIT-R) molecule but also intermolecular interactions between NIT-R moieties belonging to different Y(hfac)(NIT-R) units. These results are supported by the use of spin Hamiltonian models going beyond the basic Bleaney-Bowers formalism to properly fit the experimental magnetic data. Finally, the microscopic mechanisms behind the evidenced intramolecular exchange interactions are elucidated through the inspection of the calculated wave functions. In particular, whereas the role of Y orbitals was already proposed, we herein demonstrate the contribution of the hfac ancillary ligands in mediating the magnetic interactions between the NIT radicals.
我们报告了对一系列基于硝酰基氮氧化物(NIT)的Y(III)配合物(即R = PhOPh的Y(hfac)(NIT-R)(1)、R = PhOEt的Y(hfac)(NIT-R)(2)以及R = PhOMe的Y(hfac)(NIT-R)(3a、3b))的磁行为所涉及的交换相互作用进行的理论与实验相结合的研究。尽管这些配合物中的一些或其Dy(III)母体先前已在文献中有所描述[Zhao等人,《过渡金属化学》,2006年,第31卷,第593页;Bernot等人,《美国化学会志》,2009年,第131卷,第5573页],但其合成方法以及结构和磁性质都被重新进行了全面考量。根据R的性质和结晶条件,Y(hfac)(NIT-R)单元可以组装成超分子二聚体、线性或正交链。该系列内这种结构多样性导致了极其不同的磁行为。基于最先进的基于波函数的量子化学方法(CASSCF/DDCI)对所观察到的行为进行了合理化分析,这些方法表明,不仅在孤立的Y(hfac)(NIT-R)分子的NIT-R自由基配体之间存在有效的分子内相互作用,而且在属于不同Y(hfac)(NIT-R)单元的NIT-R部分之间也存在分子间相互作用。使用超越基本Bleaney-Bowers形式主义的自旋哈密顿模型来正确拟合实验磁数据,支持了这些结果。最后,通过检查计算得到的波函数,阐明了所证实的分子内交换相互作用背后的微观机制。特别是,虽然已经提出了Y轨道的作用,但我们在此证明了hfac辅助配体在介导NIT自由基之间的磁相互作用中的贡献。