Escuela de Ingeniería de Caminos, Canales y Puertos y de Ingeniería de Minas, Universidad Politécnica de Cartagena, P° de Alfonso XIII 52, 30203 Cartagena, Spain.
Centro de Estudios y Experimentación de Obras Públicas (CEDEX), Alfonso XII 3, 28014 Madrid, Spain.
Sci Total Environ. 2017 Dec 1;599-600:2105-2120. doi: 10.1016/j.scitotenv.2017.04.056. Epub 2017 May 25.
The Úbeda aquifer system is a multi-layered aquifer intensively exploited for irrigation. It covers 1100km and consists of piled up sedimentary aquifer and aquitard layers from Triassic sandstones and clays at the bottom, to Jurassic carbonates (main exploited layer) in the middle, and Miocene sandstones and marls at the top. Flow network modification by intense exploitation and the existence of deep faults favour vertical mixing of waters from different layers and with distinct chemical composition. This induces quality loss and fosters risk of quantity restrictions. To support future groundwater abstraction management, a hydrogeochemical (major and some minor solutes) and isotopic (Rn) study was performed to identify the chemical signatures of the different layers and their mixing proportions in mixed samples. The study of 134 groundwater samples allowed a preliminary identification of hydrochemical signatures and mixtures, but the existence of reducing conditions in the most exploited sector prevents the utility of sulphate as a tracer of Triassic groundwater in the Jurassic boreholes. The potential of Rn to establish isotopic signatures and to trace groundwater provenance in mixtures was tested. Rn was measured in 48 samples from springs and boreholes in most aquifer layers. At first, clear correlations were observed between Rn, Cl and SO in groundwater. Afterwards, very good correlations were observed between Rn and the chemical facies of the different layers established with End Member Mixing Analysis (EMMA). Using Rn as part of the signatures, EMMA helped to identify end-member samples, and to quantify the mixing proportions of water from the Triassic and the Deep Miocene layers in groundwater pumped by deep agricultural wells screened in the Jurassic. The incorporation of Rn to the study also allowed identifying the impact of irrigation returns through the association of moderate NO, Cl, and Br contents with very low Rn activities.
乌贝达含水层系统是一个多层含水层,被密集开采用于灌溉。它覆盖 1100 公里,由底部的三叠纪砂岩和粘土组成的堆积沉积含水层和隔水层,到中间的侏罗纪碳酸盐岩(主要开采层),再到顶部的中新世砂岩和泥灰岩。强烈开采导致的水流网络改造和深大断裂的存在,有利于不同层位和具有明显化学成分的水的垂直混合。这导致了水质的损失,并增加了数量限制的风险。为了支持未来的地下水开采管理,进行了水文地球化学(主要和一些次要溶质)和同位素(Rn)研究,以确定不同层位的化学特征及其在混合样品中的混合比例。对 134 个地下水样本的研究初步确定了水文地球化学特征和混合物,但在最开采区存在还原条件,阻止了硫酸盐作为侏罗纪钻孔中三叠纪地下水示踪剂的使用。测试了 Rn 建立同位素特征和追踪混合物中地下水来源的潜力。从大多数含水层层的泉水和钻孔中测量了 48 个样本中的 Rn。首先,在地下水中观察到 Rn、Cl 和 SO 之间存在明显的相关性。之后,在 Rn 和用端元混合分析(EMMA)建立的不同层位的化学相之间观察到非常好的相关性。将 Rn 用作特征的一部分,EMMA 有助于识别端元样本,并定量确定深农业井从侏罗纪含水层中抽取的地下水来自三叠纪和深部中新世层的混合比例。将 Rn 纳入研究还允许通过将中等 NO、Cl 和 Br 含量与非常低的 Rn 活性相关联,来识别灌溉回返的影响。