Suppr超能文献

结合不同的微小RNA靶标预测工具的结果可提高分析性能。

Combining Results from Distinct MicroRNA Target Prediction Tools Enhances the Performance of Analyses.

作者信息

Oliveira Arthur C, Bovolenta Luiz A, Nachtigall Pedro G, Herkenhoff Marcos E, Lemke Ney, Pinhal Danillo

机构信息

Laboratory of Genomics and Molecular Evolution, Department of Genetics, Institute of Biosciences of Botucatu, São Paulo State Univesity (UNESP)Botucatu, Brazil.

Laboratory of Bioinformatics and Computational Biophysics, Department of Physics and Biophysics, Institute of Biosciences of Botucatu, São Paulo State Univesity (UNESP)Botucatu, Brazil.

出版信息

Front Genet. 2017 May 16;8:59. doi: 10.3389/fgene.2017.00059. eCollection 2017.

Abstract

Target prediction is generally the first step toward recognition of bona fide microRNA (miRNA)-target interactions in living cells. Several target prediction tools are now available, which use distinct criteria and stringency to provide the best set of candidate targets for a single miRNA or a subset of miRNAs. However, there are many false-negative predictions, and consensus about the optimum strategy to select and use the output information provided by the target prediction tools is lacking. We compared the performance of four tools cited in literature-TargetScan (TS), miRanda-mirSVR (MR), Pita, and RNA22 (R22), and we determined the most effective approach for analyzing target prediction data (individual, union, or intersection). For this purpose, we calculated the sensitivity, specificity, precision, and correlation of these approaches using 10 miRNAs (miR-1-3p, miR-17-5p, miR-21-5p, miR-24-3p, miR-29a-3p, miR-34a-5p, miR-124-3p, miR-125b-5p, miR-145-5p, and miR-155-5p) and 1,400 genes (700 validated and 700 non-validated) as targets of these miRNAs. The four tools provided a subset of high-quality predictions and returned few false-positive predictions; however, they could not identify several known true targets. We demonstrate that union of TS/MR and TS/MR/R22 enhanced the quality of prediction analysis of miRNA targets. We conclude that the union rather than the intersection of the aforementioned tools is the best strategy for maximizing performance while minimizing the loss of time and resources in subsequent and experiments for functional validation of miRNA-target interactions.

摘要

靶标预测通常是识别活细胞中真正的微小RNA(miRNA)-靶标相互作用的第一步。目前有几种靶标预测工具,它们使用不同的标准和严格程度来为单个miRNA或一组miRNA提供最佳的候选靶标集。然而,存在许多假阴性预测,并且对于选择和使用靶标预测工具提供的输出信息的最佳策略缺乏共识。我们比较了文献中引用的四种工具——TargetScan(TS)、miRanda-mirSVR(MR)、Pita和RNA22(R22)的性能,并确定了分析靶标预测数据的最有效方法(单独分析、合并分析或交集分析)。为此,我们使用10种miRNA(miR-1-3p、miR-17-5p、miR-21-5p、miR-24-3p、miR-29a-3p、miR-34a-5p、miR-124-3p、miR-125b-5p、miR-145-5p和miR-155-5p)和1400个基因(700个已验证基因和700个未验证基因)作为这些miRNA的靶标,计算了这些方法的敏感性、特异性、精确性和相关性。这四种工具提供了一组高质量的预测,并且返回的假阳性预测很少;然而,它们未能识别出几个已知的真正靶标。我们证明,TS/MR以及TS/MR/R22的合并分析提高了miRNA靶标预测分析的质量。我们得出结论,上述工具的合并分析而非交集分析是在后续miRNA-靶标相互作用功能验证实验中,在最大限度减少时间和资源损失的同时最大化性能的最佳策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90ed/5432626/4400d668ebd0/fgene-08-00059-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验