Suppr超能文献

动物中微小RNA靶标的计算预测的全面概述与评估

Comprehensive overview and assessment of computational prediction of microRNA targets in animals.

作者信息

Fan Xiao, Kurgan Lukasz

出版信息

Brief Bioinform. 2015 Sep;16(5):780-94. doi: 10.1093/bib/bbu044. Epub 2014 Dec 2.

Abstract

MicroRNAs (miRNAs) are short endogenous noncoding RNAs that bind to target mRNAs, usually resulting in degradation and translational repression. Identification of miRNA targets is crucial for deciphering functional roles of the numerous miRNAs that are rapidly generated by sequencing efforts. Computational prediction methods are widely used for high-throughput generation of putative miRNA targets. We review a comprehensive collection of 38 miRNA sequence-based computational target predictors in animals that were developed over the past decade. Our in-depth analysis considers all significant perspectives including the underlying predictive methodologies with focus on how they draw from the mechanistic basis of the miRNA-mRNA interaction. We also discuss ease of use, availability, impact of the considered predictors and the evaluation protocols that were used to assess them. We are the first to comparatively and comprehensively evaluate seven representative methods when predicting miRNA targets at the duplex and gene levels. The gene-level evaluation is based on three benchmark data sets that rely on different ways to annotate targets including biochemical assays, microarrays and pSILAC. We offer practical advice on selection of appropriate predictors according to certain properties of miRNA sequences, characteristics of a specific application and desired levels of predictive quality. We also discuss future work related to the design of new models, data quality, improved usability, need for standardized evaluation and ability to predict mRNA expression changes.

摘要

微小RNA(miRNA)是短的内源性非编码RNA,其与靶mRNA结合,通常导致降解和翻译抑制。鉴定miRNA靶标对于解读通过测序工作快速产生的众多miRNA的功能作用至关重要。计算预测方法被广泛用于高通量生成假定的miRNA靶标。我们综述了过去十年中开发的38种基于动物miRNA序列的计算靶标预测工具的综合集合。我们的深入分析考虑了所有重要方面,包括潜在的预测方法,重点是它们如何从miRNA-mRNA相互作用的机制基础中得出。我们还讨论了易用性、可用性、所考虑的预测工具的影响以及用于评估它们的评估方案。我们是第一个在双链体和基因水平预测miRNA靶标时对七种代表性方法进行比较和全面评估的。基因水平的评估基于三个基准数据集,这些数据集依赖于不同的注释靶标的方法,包括生化测定、微阵列和脉冲稳定同位素标记氨基酸法(pSILAC)。我们根据miRNA序列的某些特性、特定应用的特点和所需的预测质量水平,就选择合适的预测工具提供实用建议。我们还讨论了与新模型设计、数据质量、改进的可用性、标准化评估的必要性以及预测mRNA表达变化的能力相关的未来工作。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验