自然语言处理对用于疾病监测的流感病例检测跨机构可移植性的影响。

The effects of natural language processing on cross-institutional portability of influenza case detection for disease surveillance.

作者信息

Ferraro Jeffrey P, Ye Ye, Gesteland Per H, Haug Peter J, Tsui Fuchiang Rich, Cooper Gregory F, Van Bree Rudy, Ginter Thomas, Nowalk Andrew J, Wagner Michael

机构信息

Jeffrey P. Ferraro, Homer Warner Center | Intermountain Healthcare, 5171 South Cottonwood St, Suite 220, Murray, Utah 84107,

出版信息

Appl Clin Inform. 2017 May 31;8(2):560-580. doi: 10.4338/ACI-2016-12-RA-0211.

Abstract

OBJECTIVES

This study evaluates the accuracy and portability of a natural language processing (NLP) tool for extracting clinical findings of influenza from clinical notes across two large healthcare systems. Effectiveness is evaluated on how well NLP supports downstream influenza case-detection for disease surveillance.

METHODS

We independently developed two NLP parsers, one at Intermountain Healthcare (IH) in Utah and the other at University of Pittsburgh Medical Center (UPMC) using local clinical notes from emergency department (ED) encounters of influenza. We measured NLP parser performance for the presence and absence of 70 clinical findings indicative of influenza. We then developed Bayesian network models from NLP processed reports and tested their ability to discriminate among cases of (1) influenza, (2) non-influenza influenza-like illness (NI-ILI), and (3) 'other' diagnosis.

RESULTS

On Intermountain Healthcare reports, recall and precision of the IH NLP parser were 0.71 and 0.75, respectively, and UPMC NLP parser, 0.67 and 0.79. On University of Pittsburgh Medical Center reports, recall and precision of the UPMC NLP parser were 0.73 and 0.80, respectively, and IH NLP parser, 0.53 and 0.80. Bayesian case-detection performance measured by AUROC for influenza versus non-influenza on Intermountain Healthcare cases was 0.93 (using IH NLP parser) and 0.93 (using UPMC NLP parser). Case-detection on University of Pittsburgh Medical Center cases was 0.95 (using UPMC NLP parser) and 0.83 (using IH NLP parser). For influenza versus NI-ILI on Intermountain Healthcare cases performance was 0.70 (using IH NLP parser) and 0.76 (using UPMC NLP parser). On University of Pisstburgh Medical Center cases, 0.76 (using UPMC NLP parser) and 0.65 (using IH NLP parser).

CONCLUSION

In all but one instance (influenza versus NI-ILI using IH cases), local parsers were more effective at supporting case-detection although performances of non-local parsers were reasonable.

摘要

目的

本研究评估一种自然语言处理(NLP)工具从两个大型医疗系统的临床记录中提取流感临床发现的准确性和便携性。根据NLP对疾病监测中流感病例下游检测的支持程度来评估其有效性。

方法

我们独立开发了两个NLP解析器,一个由犹他州山间医疗中心(IH)开发,另一个由匹兹堡大学医学中心(UPMC)开发,使用来自急诊科(ED)流感病例的本地临床记录。我们测量了NLP解析器对于70项表明流感的临床发现存在与否的性能。然后我们根据NLP处理后的报告开发了贝叶斯网络模型,并测试它们区分以下三种情况的能力:(1)流感,(2)非流感类流感疾病(NI-ILI),以及(3)“其他”诊断。

结果

在山间医疗中心的报告中,IH NLP解析器的召回率和精确率分别为0.71和0.75,UPMC NLP解析器的召回率和精确率分别为0.67和0.79。在匹兹堡大学医学中心的报告中,UPMC NLP解析器的召回率和精确率分别为0.73和0.80,IH NLP解析器的召回率和精确率分别为0.53和0.80。在山间医疗中心的病例中,通过曲线下面积(AUROC)衡量的流感与非流感的贝叶斯病例检测性能,使用IH NLP解析器时为0.93,使用UPMC NLP解析器时为0.93。在匹兹堡大学医学中心的病例中,使用UPMC NLP解析器时为0.95,使用IH NLP解析器时为0.83。在山间医疗中心的病例中,流感与NI-ILI的检测性能,使用IH NLP解析器时为0.70,使用UPMC NLP解析器时为0.76。在匹兹堡大学医学中心的病例中,使用UPMC NLP解析器时为0.76,使用IH NLP解析器时为0.65。

结论

除了一种情况(使用IH病例的流感与NI-ILI)外,本地解析器在支持病例检测方面更有效,尽管非本地解析器的性能也较为合理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索