Saller Maximilian A C, Habershon Scott
Department of Chemistry and Centre for Scientific Computing, University of Warwick , Coventry, CV4 7AL, United Kingdom.
J Chem Theory Comput. 2017 Jul 11;13(7):3085-3096. doi: 10.1021/acs.jctc.7b00021. Epub 2017 Jun 14.
Methods for solving the time-dependent Schrödinger equation via basis set expansion of the wave function can generally be categorized as having either static (time-independent) or dynamic (time-dependent) basis functions. We have recently introduced an alternative simulation approach which represents a middle road between these two extremes, employing dynamic (classical-like) trajectories to create a static basis set of Gaussian wavepackets in regions of phase-space relevant to future propagation of the wave function [J. Chem. Theory Comput., 11, 8 (2015)]. Here, we propose and test a modification of our methodology which aims to reduce the size of basis sets generated in our original scheme. In particular, we employ short-time classical trajectories to continuously generate new basis functions for short-time quantum propagation of the wave function; to avoid the continued growth of the basis set describing the time-dependent wave function, we employ Matching Pursuit to periodically minimize the number of basis functions required to accurately describe the wave function. Overall, this approach generates a basis set which is adapted to evolution of the wave function while also being as small as possible. In applications to challenging benchmark problems, namely a 4-dimensional model of photoexcited pyrazine and three different double-well tunnelling problems, we find that our new scheme enables accurate wave function propagation with basis sets which are around an order-of-magnitude smaller than our original trajectory-guided basis set methodology, highlighting the benefits of adaptive strategies for wave function propagation.
通过波函数的基组展开来求解含时薛定谔方程的方法通常可分为具有静态(与时间无关)或动态(与时间有关)基函数两类。我们最近引入了一种替代模拟方法,它代表了这两种极端情况之间的中间道路,利用动态(类似经典)轨迹在与波函数未来传播相关的相空间区域中创建高斯波包的静态基组[《化学理论与计算》,11,8(2015)]。在此,我们提出并测试了对我们方法的一种改进,旨在减小我们原始方案中生成的基组的大小。具体而言,我们利用短时间经典轨迹为波函数的短时间量子传播连续生成新的基函数;为避免描述含时波函数的基组持续增长,我们采用匹配追踪算法来定期最小化精确描述波函数所需的基函数数量。总体而言,这种方法生成的基组既适应波函数的演化,又尽可能小。在应用于具有挑战性的基准问题时,即光激发吡嗪的四维模型和三个不同的双阱隧穿问题,我们发现我们的新方案能够使用比我们原来的轨迹引导基组方法小约一个数量级的基组进行精确的波函数传播,突出了波函数传播自适应策略的优势。