Suppr超能文献

使用高斯过程回归对量子动力学的势能矩阵元素进行高效且准确的评估。

Efficient and accurate evaluation of potential energy matrix elements for quantum dynamics using Gaussian process regression.

作者信息

Alborzpour Jonathan P, Tew David P, Habershon Scott

机构信息

Department of Chemistry and Centre for Scientific Computing, University of Warwick, Coventry CV4 7AL, United Kingdom.

School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom.

出版信息

J Chem Phys. 2016 Nov 7;145(17):174112. doi: 10.1063/1.4964902.

Abstract

Solution of the time-dependent Schrödinger equation using a linear combination of basis functions, such as Gaussian wavepackets (GWPs), requires costly evaluation of integrals over the entire potential energy surface (PES) of the system. The standard approach, motivated by computational tractability for direct dynamics, is to approximate the PES with a second order Taylor expansion, for example centred at each GWP. In this article, we propose an alternative method for approximating PES matrix elements based on PES interpolation using Gaussian process regression (GPR). Our GPR scheme requires only single-point evaluations of the PES at a limited number of configurations in each time-step; the necessity of performing often-expensive evaluations of the Hessian matrix is completely avoided. In applications to 2-, 5-, and 10-dimensional benchmark models describing a tunnelling coordinate coupled non-linearly to a set of harmonic oscillators, we find that our GPR method results in PES matrix elements for which the average error is, in the best case, two orders-of-magnitude smaller and, in the worst case, directly comparable to that determined by any other Taylor expansion method, without requiring additional PES evaluations or Hessian matrices. Given the computational simplicity of GPR, as well as the opportunities for further refinement of the procedure highlighted herein, we argue that our GPR methodology should replace methods for evaluating PES matrix elements using Taylor expansions in quantum dynamics simulations.

摘要

使用诸如高斯波包(GWPs)等基函数的线性组合来求解含时薛定谔方程,需要对系统的整个势能面(PES)进行积分,这成本高昂。出于直接动力学计算易处理性的考虑,标准方法是用二阶泰勒展开来近似势能面,例如以每个高斯波包为中心。在本文中,我们提出了一种基于高斯过程回归(GPR)的势能面插值来近似势能面矩阵元的替代方法。我们的GPR方案在每个时间步仅需在有限数量的构型下对势能面进行单点求值;完全避免了进行通常成本高昂的海森矩阵求值的必要性。在应用于描述隧穿坐标与一组谐振子非线性耦合的二维、五维和十维基准模型时,我们发现我们的GPR方法得到的势能面矩阵元,在最佳情况下,平均误差小两个数量级,在最坏情况下,与任何其他泰勒展开方法确定的误差直接可比,且无需额外的势能面求值或海森矩阵。鉴于GPR的计算简便性,以及本文强调的该程序进一步优化的机会,我们认为在量子动力学模拟中,我们的GPR方法应取代使用泰勒展开来评估势能面矩阵元的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验