From the *Division of Nephrology and Hypertension, and †Department of Radiology, Mayo Clinic, Rochester, MN.
Invest Radiol. 2017 Nov;52(11):672-679. doi: 10.1097/RLI.0000000000000389.
Recent studies have indicated that excessive fat may confound assessment of diffusion in organs with high fat content, such as the liver and breast. However, the extent of this effect in the kidney, which is not considered a major fat deposition site, remains unclear. This study tested the hypothesis that renal fat may impact diffusion-weighted imaging (DWI) parameters, and proposes a 3-compartment model (TCM) to circumvent this effect.
Using computer simulations, we investigated the effect of fat on assessment of apparent diffusion coefficient (ADC), intravoxel incoherent motion (IVIM), and TCM-derived pure-diffusivity. We also investigated the influence of magnetic resonance repetition (TR) and echo time (TE) on DWI parameters as a result of variation in the relative contribution of the fat signal. Apparent diffusion coefficient, IVIM and TCM DWI parameters were calculated in domestic pigs fed a high-cholesterol (obese group) or normal diet (lean group), and correlated to renal histology. Intravoxel incoherent motion-derived pure-diffusivity was also compared among 15 essential hypertension patients classified by body mass index (BMI) (high vs normal). Finally, pure-diffusivity was calculated and compared in 8 patients with atherosclerotic renal artery stenosis (ARAS) and 5 healthy subjects using IVIM and TCM.
Simulations showed that unaccounted fat results in the underestimation of IVIM-derived pure diffusivity. The underestimation increases as the fat fraction increases, with higher pace at lower fat contents. The underestimation was larger for shorter TR and longer TE values due to the enhancement of the relative contribution of the fat signal. Moreover, TCM, which incorporates highly diffusion-weighted images (b > 2500 s/mm), could correct for fat-dependent underestimation. Animal studies in the lean and obese groups confirmed lower ADC and IVIM pure-diffusivity in obese versus lean pigs with otherwise healthy kidneys, whereas pure-diffusivity calculated using TCM were not different between the 2 groups. Similarly, essential hypertension patients with high BMI had lower ADC (1.9 vs 2.1 × 10 mm/s) and pure-diffusivity (1.7 vs 1.9 × 10 mm/s) than those with normal BMI. Pure-diffusivity calculated using IVIM was not different between the ARAS and healthy subjects, but TCM revealed significantly lower diffusivity in ARAS.
Excessive renal fat may cause underestimation of renal ADC and IVIM-derived pure-diffusivity, which may hinder detection of renal pathology. Models accounting for fat contribution may help reduce the variability of diffusivity calculated using DWI.
最近的研究表明,过多的脂肪可能会混淆对富含脂肪的器官(如肝脏和乳房)的扩散评估。然而,在肾脏中,这种影响的程度尚不清楚,肾脏通常不被认为是主要的脂肪沉积部位。本研究假设肾脂肪可能会影响扩散加权成像(DWI)参数,并提出了一个三房室模型(TCM)来规避这种影响。
我们使用计算机模拟研究了脂肪对表观扩散系数(ADC)、体素内不相干运动(IVIM)和 TCM 衍生的纯扩散的评估的影响。我们还研究了磁共振重复时间(TR)和回波时间(TE)的变化对 DWI 参数的影响,这是由于脂肪信号的相对贡献的变化所致。在给予高胆固醇(肥胖组)或正常饮食(瘦组)的家猪中计算了 ADC、IVIM 和 TCM DWI 参数,并与肾组织学相关联。还比较了根据体重指数(BMI)分类的 15 名原发性高血压患者(高 vs 正常)的 IVIM 衍生的纯扩散。最后,使用 IVIM 和 TCM 在 8 名动脉粥样硬化性肾动脉狭窄(ARAS)患者和 5 名健康受试者中计算并比较了纯扩散。
模拟结果表明,未考虑脂肪会导致 IVIM 衍生的纯扩散低估。随着脂肪分数的增加,低估程度增加,在较低的脂肪含量下增加速度更快。由于脂肪信号的相对贡献增强,较短的 TR 和较长的 TE 值会导致更大的低估。此外,包含高扩散加权图像(b>2500 s/mm)的 TCM 可以纠正脂肪依赖性的低估。瘦组和肥胖组的动物研究证实,肥胖猪的肾脏健康但脂肪含量较高时,其 ADC 和 IVIM 纯扩散性低于瘦猪,而 TCM 计算的纯扩散性在两组之间没有差异。同样,体重指数较高的原发性高血压患者的 ADC(1.9 与 2.1×10 mm/s)和纯扩散性(1.7 与 1.9×10 mm/s)低于体重指数正常的患者。IVIM 计算的纯扩散性在 ARAS 与健康受试者之间没有差异,但 TCM 显示 ARAS 的扩散性明显降低。
过多的肾脂肪可能会导致肾 ADC 和 IVIM 衍生的纯扩散性低估,从而可能阻碍肾脏病理学的检测。考虑脂肪贡献的模型可能有助于减少使用 DWI 计算的扩散性的变异性。