Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands.
Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584CH Utrecht, The Netherlands.
Nature. 2017 Jun 8;546(7657):307-311. doi: 10.1038/nature22376. Epub 2017 May 31.
As key executers of biological functions, the activity and abundance of proteins are subjected to extensive regulation. Deciphering the genetic architecture underlying this regulation is critical for understanding cellular signalling events and responses to environmental cues. Using random mutagenesis in haploid human cells, we apply a sensitive approach to directly couple genomic mutations to protein measurements in individual cells. Here we use this to examine a suite of cellular processes, such as transcriptional induction, regulation of protein abundance and splicing, signalling cascades (mitogen-activated protein kinase (MAPK), G-protein-coupled receptor (GPCR), protein kinase B (AKT), interferon, and Wingless and Int-related protein (WNT) pathways) and epigenetic modifications (histone crotonylation and methylation). This scalable, sequencing-based procedure elucidates the genetic landscapes that control protein states, identifying genes that cause very narrow phenotypic effects and genes that lead to broad phenotypic consequences. The resulting genetic wiring map identifies the E3-ligase substrate adaptor KCTD5 (ref. 1) as a negative regulator of the AKT pathway, a key signalling cascade frequently deregulated in cancer. KCTD5-deficient cells show elevated levels of phospho-AKT at S473 that could not be attributed to effects on canonical pathway components. To reveal the genetic requirements for this phenotype, we iteratively analysed the regulatory network linked to AKT activity in the knockout background. This genetic modifier screen exposes suppressors of the KCTD5 phenotype and mechanistically demonstrates that KCTD5 acts as an off-switch for GPCR signalling by triggering proteolysis of Gβγ heterodimers dissociated from the Gα subunit. Although biological networks have previously been constructed on the basis of gene expression, protein-protein associations, or genetic interaction profiles, we foresee that the approach described here will enable the generation of a comprehensive genetic wiring map for human cells on the basis of quantitative protein states.
作为生物功能的关键执行者,蛋白质的活性和丰度受到广泛的调控。解析这种调控的遗传结构对于理解细胞信号事件和对环境线索的反应至关重要。我们在单倍体人类细胞中使用随机诱变,应用一种敏感的方法将基因组突变直接与单个细胞中的蛋白质测量结果相关联。在这里,我们使用这种方法来研究一系列细胞过程,如转录诱导、蛋白质丰度和剪接的调节、信号级联(丝裂原活化蛋白激酶 (MAPK)、G 蛋白偶联受体 (GPCR)、蛋白激酶 B (AKT)、干扰素和 Wingless 和 Int 相关蛋白 (WNT) 途径)和表观遗传修饰(组蛋白克罗顿化和甲基化)。这种可扩展的、基于测序的程序阐明了控制蛋白质状态的遗传景观,鉴定出导致非常狭窄表型效应的基因和导致广泛表型后果的基因。由此产生的遗传接线图确定了 E3 连接酶底物衔接蛋白 KCTD5(参考文献 1)作为 AKT 途径的负调节剂,AKT 途径是癌症中经常失调的关键信号级联。KCTD5 缺陷细胞显示 S473 处磷酸化 AKT 的水平升高,这不能归因于对经典途径成分的影响。为了揭示这种表型的遗传要求,我们在敲除背景下迭代分析与 AKT 活性相关的调节网络。这种遗传修饰筛选暴露了 KCTD5 表型的抑制子,并从机制上证明 KCTD5 通过触发与 Gα 亚基分离的 Gβγ 异二聚体的蛋白水解,充当 GPCR 信号的关断开关。尽管以前已经基于基因表达、蛋白质-蛋白质相互作用或遗传相互作用谱构建了生物网络,但我们预计这里描述的方法将能够基于定量蛋白质状态为人类细胞生成全面的遗传接线图。