Suppr超能文献

磷脂酶A2G15是一种骨形态发生蛋白水解酶,其靶向作用可改善溶酶体疾病。

PLA2G15 is a BMP hydrolase and its targeting ameliorates lysosomal disease.

作者信息

Nyame Kwamina, Xiong Jian, Alsohybe Hisham N, de Jong Arthur P H, Peña Isabelle V, de Miguel Ricardo, Brummelkamp Thijn R, Hartmann Guido, Nijman Sebastian M B, Raaben Matthijs, Simcox Judith A, Blomen Vincent A, Abu-Remaileh Monther

机构信息

Department of Chemical Engineering, Stanford University, Stanford, CA, USA.

Department of Genetics, Stanford University, Stanford, CA, USA.

出版信息

Nature. 2025 May 7. doi: 10.1038/s41586-025-08942-y.

Abstract

Lysosomes catabolize lipids and other biological molecules, maintaining cellular and organismal homeostasis. Bis(monoacylglycero)phosphate (BMP), a major lipid constituent of intralysosomal vesicles, stimulates lipid-degrading enzymes and is altered in various human conditions, including neurodegenerative diseases. Although lysosomal BMP synthase was recently discovered, the enzymes mediating BMP turnover remain elusive. Here we show that lysosomal phospholipase PLA2G15 is a physiological BMP hydrolase. We further demonstrate that the resistance of BMP to lysosomal hydrolysis arises from its unique sn2, sn2' esterification position and stereochemistry, as neither feature alone confers resistance. Purified PLA2G15 catabolizes most BMP species derived from cell and tissue lysosomes. Furthermore, PLA2G15 efficiently hydrolyses synthesized BMP stereoisomers with primary esters, challenging the long-held thought that BMP stereochemistry alone ensures resistance to acid phospholipases. Conversely, BMP with secondary esters and S,S stereoconfiguration is stable in vitro and requires acyl migration for hydrolysis in lysosomes. Consistent with our biochemical data, PLA2G15-deficient cells and tissues accumulate several BMP species, a phenotype reversible by supplementing wild-type PLA2G15 but not its inactive mutant. Targeting PLA2G15 reduces the cholesterol accumulation in fibroblasts of patients with Niemann-Pick disease type C1 and significantly ameliorates disease pathologies in Niemann-Pick disease type C1-deficient mice, leading to an extended lifespan. Our findings established the rules governing BMP stability in lysosomes and identified PLA2G15 as a lysosomal BMP hydrolase and a potential target for therapeutic intervention in neurodegenerative diseases.

摘要

溶酶体分解代谢脂质和其他生物分子,维持细胞和机体的稳态。双(单酰甘油)磷酸酯(BMP)是溶酶体内小泡的主要脂质成分,可刺激脂质降解酶,并且在包括神经退行性疾病在内的各种人类疾病状态下会发生改变。尽管最近发现了溶酶体BMP合酶,但介导BMP周转的酶仍然未知。在这里,我们表明溶酶体磷脂酶PLA2G15是一种生理性BMP水解酶。我们进一步证明,BMP对溶酶体水解的抗性源于其独特的sn2、sn2'酯化位置和立体化学,因为这两个特征单独都不会赋予抗性。纯化的PLA2G15可分解代谢源自细胞和组织溶酶体的大多数BMP种类。此外,PLA2G15能有效水解带有伯酯的合成BMP立体异构体,这挑战了长期以来认为仅BMP立体化学就能确保对酸性磷脂酶具有抗性的观点。相反,带有仲酯和S,S立体构型的BMP在体外是稳定的,并且在溶酶体中水解需要酰基迁移。与我们的生化数据一致,缺乏PLA2G15的细胞和组织会积累多种BMP种类,补充野生型PLA2G15而非其无活性突变体可使该表型逆转。靶向PLA2G15可减少1型尼曼-匹克病患者成纤维细胞中的胆固醇积累,并显著改善1型尼曼-匹克病缺陷小鼠的疾病病理,从而延长寿命。我们的研究结果确立了溶酶体中BMP稳定性的规则,并确定PLA2G15是一种溶酶体BMP水解酶以及神经退行性疾病治疗干预的潜在靶点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验