Suppr超能文献

通过斯卡查德图和克洛茨图确定的受体位点数量:互补方法

Number of receptor sites from Scatchard and Klotz graphs: complementary approaches.

作者信息

Faguet G B

机构信息

Department of Medicine, Medical College of Georgia, Augusta.

出版信息

J Cell Biochem. 1986;31(3):243-50. doi: 10.1002/jcb.240310306.

Abstract

Estimates of number of receptor sites and evaluation of the complexity of the binding process require collection of a spectrum of binding measurements and selection of a theoretical model to fit the experimental data. The appropriateness of the measurements and of the model can be visually judged on graphic displays of the model-data fitting curves in Scatchard and semilogarithmic coordinates. This approach is helpful for detecting the two types of errors most frequently found in reports of binding studies: (1) underestimating the number of binding sites, and (2) failure to recognize the complexity of the binding process. While the former is readily recognizable on semilogarithmic but not on Scatchard plots of the model fitting the data, the latter might not be apparent on either plot. Collection of extensive measurements over a wide range of ligand concentrations with graphic display of the model-data fitting curves in Scatchard and semilogarithmic coordinates should be used to recognize and prevent both errors.

摘要

受体位点数量的估计以及结合过程复杂性的评估需要收集一系列结合测量数据,并选择一个理论模型来拟合实验数据。测量数据和模型的适用性可以通过在Scatchard和半对数坐标中模型-数据拟合曲线的图形显示进行直观判断。这种方法有助于检测结合研究报告中最常见的两种错误:(1)低估结合位点的数量,以及(2)未能认识到结合过程的复杂性。虽然前者在拟合数据的模型的半对数图上很容易识别,但在Scatchard图上则不然,而后者在两种图上可能都不明显。应收集广泛的配体浓度范围内的大量测量数据,并在Scatchard和半对数坐标中以图形方式显示模型-数据拟合曲线,以识别和防止这两种错误。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验