Chung Justin J, Sum Brian S T, Li Siwei, Stevens Molly M, Georgiou Theoni K, Jones Julian R
Department of Materials, Imperial College London, London, SW7 2AZ, UK.
Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
Macromol Rapid Commun. 2017 Aug;38(15). doi: 10.1002/marc.201700168. Epub 2017 May 31.
Hybrids with a silica network covalently bonded to a polymer are promising materials for bone repair. Previous work on synthesizing methyl methacrylate (MMA) based copolymers by reversible addition-fragmentation chain transfer (RAFT) polymerization gives high tailorability of mechanical properties since sophisticated polymer structures can be designed. However, more flexible hybrids would be beneficial. Here, n-butyl methacrylate (BMA) and methyl acrylate (MA) based hybrids are produced. Unlike MMA, BMA and MA hybrids do not show plastic deformation, and BMA hybrid has strain to failure of 33%. Although the new hybrids are more flexible, preosteoblast cells do not adhere on their surfaces, due to higher hydrophobicity and lower stiffness. Comonomer choice is crucial for bone regenerative hybrids.
具有与聚合物共价键合的二氧化硅网络的杂化材料是用于骨修复的有前途的材料。先前通过可逆加成-断裂链转移(RAFT)聚合合成基于甲基丙烯酸甲酯(MMA)的共聚物的工作,由于可以设计复杂的聚合物结构,因此在机械性能方面具有很高的可定制性。然而,更具柔韧性的杂化材料将是有益的。在此,制备了基于甲基丙烯酸正丁酯(BMA)和丙烯酸甲酯(MA)的杂化材料。与MMA不同,BMA和MA杂化材料不显示塑性变形,并且BMA杂化材料的断裂应变率为33%。尽管新的杂化材料更具柔韧性,但由于疏水性较高和硬度较低,前成骨细胞不会粘附在它们的表面上。共聚单体的选择对于骨再生杂化材料至关重要。