Suppr超能文献

用于系统发育推断的最佳拟合最大似然模型:基于已知系统发育的实证检验

BEST-FIT MAXIMUM-LIKELIHOOD MODELS FOR PHYLOGENETIC INFERENCE: EMPIRICAL TESTS WITH KNOWN PHYLOGENIES.

作者信息

Cunningham C W, Zhu H, Hillis D M

机构信息

Zoology Department, Duke University, Durham, North Carolina, 27708.

Department of Zoology and Institute of Cellular and Molecular Biology, University of Texas, Austin, Texas, 78712.

出版信息

Evolution. 1998 Aug;52(4):978-987. doi: 10.1111/j.1558-5646.1998.tb01827.x.

Abstract

Despite the proliferation of increasingly sophisticated models of DNA sequence evolution, choosing among models remains a major problem in phylogenetic reconstruction. The choice of appropriate models is thought to be especially important when there is large variation among branch lengths. We evaluated the ability of nested models to reconstruct experimentally generated, known phylogenies of bacteriophage T7 as we varied the terminal branch lengths. Then, for each phylogeny we determined the best-fit model by progressively adding parameters to simpler models. We found that in several cases the choice of best-fit model was affected by the parameter addition sequence. In terms of phylogenetic performance, there was little difference between models when the ratio of short: long terminal branches was 1:3 or less. However, under conditions of extreme terminal branch-length variation, there were not only dramatic differences among models, but best-fit models were always among the best at overcoming long-branch attraction. The performance of minimum-evolution-distance methods was generally lower than that of discrete maximum-likelihood methods, even if maximum-likelihood methods were used to generate distance matrices. Correcting for among-site rate variation was especially important for overcoming long-branch attraction. The generality of our conclusions is supported by earlier simulation studies and by a preliminary analysis of mitochondrial and nuclear sequences from a well-supported four-taxon amniote phylogeny.

摘要

尽管越来越复杂的DNA序列进化模型不断涌现,但在系统发育重建中,模型选择仍然是一个主要问题。当分支长度存在很大差异时,选择合适的模型被认为尤为重要。我们在改变末端分支长度时,评估了嵌套模型重建实验生成的已知噬菌体T7系统发育的能力。然后,对于每个系统发育,我们通过逐步向更简单的模型添加参数来确定最佳拟合模型。我们发现,在几种情况下,最佳拟合模型的选择受参数添加顺序的影响。就系统发育性能而言,当短末端分支与长末端分支的比例为1:3或更低时,模型之间几乎没有差异。然而,在极端末端分支长度变化的条件下,模型之间不仅存在巨大差异,而且最佳拟合模型总是在克服长枝吸引方面表现最佳的模型之中。即使使用最大似然法生成距离矩阵,最小进化距离法的性能通常也低于离散最大似然法。校正位点间的速率变化对于克服长枝吸引尤为重要。我们的结论的普遍性得到了早期模拟研究以及对一个得到充分支持的四分类羊膜动物系统发育的线粒体和核序列的初步分析的支持。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验