Suppr超能文献

药代动力学与药物相互作用在癌症进化计算模型中确定最佳联合策略。

Pharmacokinetics and Drug Interactions Determine Optimum Combination Strategies in Computational Models of Cancer Evolution.

作者信息

Chakrabarti Shaon, Michor Franziska

机构信息

Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts.

Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.

出版信息

Cancer Res. 2017 Jul 15;77(14):3908-3921. doi: 10.1158/0008-5472.CAN-16-2871. Epub 2017 May 31.

Abstract

The identification of optimal drug administration schedules to battle the emergence of resistance is a major challenge in cancer research. The existence of a multitude of resistance mechanisms necessitates administering drugs in combination, significantly complicating the endeavor of predicting the evolutionary dynamics of cancers and optimal intervention strategies. A thorough understanding of the important determinants of cancer evolution under combination therapies is therefore crucial for correctly predicting treatment outcomes. Here we developed the first computational strategy to explore pharmacokinetic and drug interaction effects in evolutionary models of cancer progression, a crucial step towards making clinically relevant predictions. We found that incorporating these phenomena into our multiscale stochastic modeling framework significantly changes the optimum drug administration schedules identified, often predicting nonintuitive strategies for combination therapies. We applied our approach to an ongoing phase Ib clinical trial (TATTON) administering AZD9291 and selumetinib to EGFR-mutant lung cancer patients. Our results suggest that the schedules used in the three trial arms have almost identical efficacies, but slight modifications in the dosing frequencies of the two drugs can significantly increase tumor cell eradication. Interestingly, we also predict that drug concentrations lower than the MTD are as efficacious, suggesting that lowering the total amount of drug administered could lower toxicities while not compromising on the effectiveness of the drugs. Our approach highlights the fact that quantitative knowledge of pharmacokinetic, drug interaction, and evolutionary processes is essential for identifying best intervention strategies. Our method is applicable to diverse cancer and treatment types and allows for a rational design of clinical trials. .

摘要

确定最佳给药方案以对抗耐药性的出现是癌症研究中的一项重大挑战。多种耐药机制的存在使得必须联合用药,这显著增加了预测癌症进化动态和最佳干预策略的难度。因此,深入了解联合治疗下癌症进化的重要决定因素对于正确预测治疗结果至关重要。在此,我们开发了首个计算策略,以探索癌症进展进化模型中的药代动力学和药物相互作用效应,这是做出临床相关预测的关键一步。我们发现,将这些现象纳入我们的多尺度随机建模框架会显著改变所确定的最佳给药方案,常常会预测出联合治疗的非直观策略。我们将我们的方法应用于一项正在进行的Ib期临床试验(TATTON),该试验对表皮生长因子受体(EGFR)突变的肺癌患者使用AZD9291和司美替尼。我们的结果表明,三个试验组所使用的给药方案疗效几乎相同,但两种药物给药频率的轻微改变可显著提高肿瘤细胞的根除率。有趣的是,我们还预测低于最大耐受剂量(MTD)的药物浓度同样有效,这表明降低给药总量可降低毒性,同时不影响药物疗效。我们的方法凸显了药代动力学、药物相互作用和进化过程的定量知识对于确定最佳干预策略至关重要这一事实。我们的方法适用于多种癌症和治疗类型,并允许对临床试验进行合理设计。

相似文献

10
Evolution of acquired resistance to anti-cancer therapy.抗癌治疗获得性耐药的演变。
J Theor Biol. 2014 Aug 21;355:10-20. doi: 10.1016/j.jtbi.2014.02.025. Epub 2014 Mar 25.

引用本文的文献

5
Reinforcement learning informs optimal treatment strategies to limit antibiotic resistance.强化学习指导最优治疗策略以限制抗生素耐药性。
Proc Natl Acad Sci U S A. 2024 Apr 16;121(16):e2303165121. doi: 10.1073/pnas.2303165121. Epub 2024 Apr 12.
7
Preventing evolutionary rescue in cancer.预防癌症中的进化拯救。
bioRxiv. 2024 Aug 27:2023.11.22.568336. doi: 10.1101/2023.11.22.568336.

本文引用的文献

3
Drug resistance to targeted therapies: déjà vu all over again.对靶向治疗的耐药性:似曾相识的感觉再次出现。
Mol Oncol. 2014 Sep 12;8(6):1067-83. doi: 10.1016/j.molonc.2014.05.004. Epub 2014 May 21.
5
Evolution of acquired resistance to anti-cancer therapy.抗癌治疗获得性耐药的演变。
J Theor Biol. 2014 Aug 21;355:10-20. doi: 10.1016/j.jtbi.2014.02.025. Epub 2014 Mar 25.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验