Suppr超能文献

来自凤凰豆娘明亮白色二维无序翅膀结构的隐蔽线性偏振特征。

Covert linear polarization signatures from brilliant white two-dimensional disordered wing structures of the phoenix damselfly.

作者信息

Nixon M R, Orr A G, Vukusic P

机构信息

School of Physics, University of Exeter, Exeter EX4 4QL, UK

Environmental Futures Centre, Griffith University, Nathan, Queensland 4111, Australia.

出版信息

J R Soc Interface. 2017 May;14(130). doi: 10.1098/rsif.2017.0036.

Abstract

The damselfly reflects brilliant white on the ventral side of its hindwings and a copper-gold colour on the dorsal side. Unlike many previous investigations of odonate wings, in which colour appearances arise either from multilayer interference or from wing-membrane pigmentation, the whiteness on the wings of results from light scattered by a specialized arrangement of flattened waxy fibres and the copper-gold colour is produced by pigment-based filtering of this light scatter. The waxy fibres responsible for this optical signature effectively form a structure that is disordered in two dimensions and this also gives rise to distinct optical linear polarization. It is a structure that provides a mechanism enabling to display its bright wing colours efficiently for territorial signalling, both passively while perched, in which the sunlit copper-gold upperside is presented against a highly contrasting background of foliage, and actively in territorial contests in which the white underside is also presented. It also offers a template for biomimetic high-intensity broadband reflectors that have a pronounced polarization signature.

摘要

豆娘后翅腹面呈现出明亮的白色,背面则是铜金色。与之前许多对蜻蜓目昆虫翅膀的研究不同,在那些研究中,颜色外观要么源于多层干涉,要么源于翅膜色素沉着,而豆娘翅膀上的白色是由扁平蜡质纤维的特殊排列散射光线形成的,铜金色则是通过基于色素对这种光散射进行过滤产生的。负责这种光学特征的蜡质纤维有效地形成了一种在二维空间无序的结构,这也产生了明显的光学线性偏振。这种结构提供了一种机制,使豆娘能够在领地信号展示中有效地展现其明亮的翅膀颜色,既可以在停歇时被动展示,此时阳光照射下的铜金色上侧与对比度极高的树叶背景形成鲜明对比,也可以在领地争夺中主动展示,此时白色下侧也会呈现出来。它还为具有明显偏振特征的仿生高强度宽带反射器提供了一个模板。

相似文献

2
Structural coloration predicts the outcome of male contests in the Amazonian damselfly Chalcopteryx scintillans (Odonata: Polythoridae).
Arthropod Struct Dev. 2019 Nov;53:100884. doi: 10.1016/j.asd.2019.100884. Epub 2019 Oct 24.
4
Basal Complex and Basal Venation of Odonata Wings: Structural Diversity and Potential Role in the Wing Deformation.
PLoS One. 2016 Aug 11;11(8):e0160610. doi: 10.1371/journal.pone.0160610. eCollection 2016.
5
Bird predation selects for wing shape and coloration in a damselfly.
J Evol Biol. 2015 Apr;28(4):791-9. doi: 10.1111/jeb.12605. Epub 2015 Mar 4.
7
Wrinkles enhance the diffuse reflection from the dragonfly Rhyothemis resplendens.
J R Soc Interface. 2015 Feb 6;12(103). doi: 10.1098/rsif.2014.0749.
8
Variable assessment of wing colouration in aerial contests of the red-winged damselfly Mnesarete pudica (Zygoptera, Calopterygidae).
Naturwissenschaften. 2015 Apr;102(3-4):13. doi: 10.1007/s00114-015-1261-z. Epub 2015 Mar 17.
9
Novel wing display and divergent agonistic behaviors of two incipient Psolodesmus damselflies.
Naturwissenschaften. 2021 Oct 3;108(6):49. doi: 10.1007/s00114-021-01758-6.
10
Mechanism of the wing colouration in the dragonfly Zenithoptera lanei (Odonata: Libellulidae) and its role in intraspecific communication.
J Insect Physiol. 2015 Oct;81:129-36. doi: 10.1016/j.jinsphys.2015.07.010. Epub 2015 Jul 17.

引用本文的文献

1
Polarized vision in the eyes of the most effective predators: dragonflies and damselflies (Odonata).
Naturwissenschaften. 2025 Jan 21;112(1):8. doi: 10.1007/s00114-025-01959-3.
2
Topological invariance in whiteness optimisation.
Commun Phys. 2023;6(1):137. doi: 10.1038/s42005-023-01234-9. Epub 2023 Jun 10.
3
Cuticular modified air sacs underlie white coloration in the olive fruit fly, Bactrocera oleae.
Commun Biol. 2021 Jul 16;4(1):881. doi: 10.1038/s42003-021-02396-4.
4
Pterin-pigmented nanospheres create the colours of the polymorphic damselfly Ischnura elegans.
J R Soc Interface. 2019 Apr 26;16(153):20180785. doi: 10.1098/rsif.2018.0785.

本文引用的文献

1
Mechanism of the wing colouration in the dragonfly Zenithoptera lanei (Odonata: Libellulidae) and its role in intraspecific communication.
J Insect Physiol. 2015 Oct;81:129-36. doi: 10.1016/j.jinsphys.2015.07.010. Epub 2015 Jul 17.
2
Extraordinary diversity of visual opsin genes in dragonflies.
Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):E1247-56. doi: 10.1073/pnas.1424670112. Epub 2015 Feb 23.
3
Wrinkles enhance the diffuse reflection from the dragonfly Rhyothemis resplendens.
J R Soc Interface. 2015 Feb 6;12(103). doi: 10.1098/rsif.2014.0749.
4
Bright-white beetle scales optimise multiple scattering of light.
Sci Rep. 2014 Aug 15;4:6075. doi: 10.1038/srep06075.
5
Alignment of crystal orientations of the multi-domain photonic crystals in Parides sesostris wing scales.
J R Soc Interface. 2013 Dec 18;11(92):20131029. doi: 10.1098/rsif.2013.1029. Print 2014 Mar 6.
6
Iridescence and spectral filtering of the gyroid-type photonic crystals in Parides sesostris wing scales.
Interface Focus. 2012 Oct 6;2(5):681-7. doi: 10.1098/rsfs.2011.0082. Epub 2011 Dec 21.
8
Sexual dichromatism of the damselfly Calopteryx japonica caused by a melanin-chitin multilayer in the male wing veins.
PLoS One. 2012;7(11):e49743. doi: 10.1371/journal.pone.0049743. Epub 2012 Nov 20.
9
Pointillist structural color in Pollia fruit.
Proc Natl Acad Sci U S A. 2012 Sep 25;109(39):15712-5. doi: 10.1073/pnas.1210105109. Epub 2012 Sep 10.
10
Polarized iridescence of the multilayered elytra of the Japanese jewel beetle, Chrysochroa fulgidissima.
Philos Trans R Soc Lond B Biol Sci. 2011 Mar 12;366(1565):709-23. doi: 10.1098/rstb.2010.0197.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验