Suppr超能文献

多畴光子晶体在 Parides sesostris 翅膀鳞片中的晶体取向排列。

Alignment of crystal orientations of the multi-domain photonic crystals in Parides sesostris wing scales.

机构信息

Graduate School of Frontier Biosciences, Osaka University, , Suita, Osaka 565-0871, Japan.

出版信息

J R Soc Interface. 2013 Dec 18;11(92):20131029. doi: 10.1098/rsif.2013.1029. Print 2014 Mar 6.

Abstract

It is known that the wing scales of the emerald-patched cattleheart butterfly, Parides sesostris, contain gyroid-type photonic crystals, which produce a green structural colour. However, the photonic crystal is not a single crystal that spreads over the entire scale, but it is separated into many small domains with different crystal orientations. As a photonic crystal generally has band gaps at different frequencies depending on the direction of light propagation, it seems mysterious that the scale is observed to be uniformly green under an optical microscope despite the multi-domain structure. In this study, we have carefully investigated the structure of the wing scale and discovered that the crystal orientations of different domains are not perfectly random, but there is a preferred crystal orientation that is aligned along the surface normal of the scale. This finding suggests that there is an additional factor during the developmental process of the microstructure that regulates the crystal orientation.

摘要

已知翡翠斑牛心蝶(Parides sesostris)的翅膀鳞片含有旋状型光子晶体,从而产生绿色结构色。然而,这种光子晶体并非覆盖整个鳞片的单晶,而是由许多具有不同晶体取向的小区域分隔而成。由于光子晶体通常会根据光传播的方向在不同频率下产生带隙,因此尽管存在多畴结构,但在光学显微镜下观察到鳞片呈现均匀的绿色,这似乎很神秘。在这项研究中,我们仔细研究了翅膀鳞片的结构,发现不同区域的晶体取向并非完全随机,而是存在一个沿鳞片表面法线方向排列的优选晶体取向。这一发现表明,在微结构的发育过程中存在一个额外的因素,它可以调节晶体取向。

相似文献

1
Alignment of crystal orientations of the multi-domain photonic crystals in Parides sesostris wing scales.
J R Soc Interface. 2013 Dec 18;11(92):20131029. doi: 10.1098/rsif.2013.1029. Print 2014 Mar 6.
2
Iridescence and spectral filtering of the gyroid-type photonic crystals in Parides sesostris wing scales.
Interface Focus. 2012 Oct 6;2(5):681-7. doi: 10.1098/rsfs.2011.0082. Epub 2011 Dec 21.
3
Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales.
Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11676-81. doi: 10.1073/pnas.0909616107. Epub 2010 Jun 14.
4
On the colour of wing scales in butterflies: iridescence and preferred orientation of single gyroid photonic crystals.
Interface Focus. 2017 Aug 6;7(4):20160154. doi: 10.1098/rsfs.2016.0154. Epub 2017 Jun 16.
5
Gyroid cuticular structures in butterfly wing scales: biological photonic crystals.
J R Soc Interface. 2008 Jan 6;5(18):85-94. doi: 10.1098/rsif.2007.1065.
6
Photonic effects in natural nanostructures on Morpho cypris and Greta oto butterfly wings.
Sci Rep. 2020 Apr 1;10(1):5786. doi: 10.1038/s41598-020-62770-w.
7
Coexistence of both gyroid chiralities in individual butterfly wing scales of Callophrys rubi.
Proc Natl Acad Sci U S A. 2015 Oct 20;112(42):12911-6. doi: 10.1073/pnas.1511354112. Epub 2015 Oct 5.

引用本文的文献

1
Study on the chirality of gyroid photonic crystals in butterfly wing scales.
Sci Rep. 2025 Jul 1;15(1):20968. doi: 10.1038/s41598-025-05750-2.
2
3D Chiral Photonic Nanostructures Based on Blue-Phase Liquid Crystals.
Small Sci. 2021 May 5;1(6):2100007. doi: 10.1002/smsc.202100007. eCollection 2021 Jun.
3
Discovery of I-WP minimal-surface-based photonic crystal in the scale of a longhorn beetle.
J R Soc Interface. 2021 Nov;18(184):20210505. doi: 10.1098/rsif.2021.0505. Epub 2021 Nov 10.
4
SPIRE-a software tool for bicontinuous phase recognition: application for plastid cubic membranes.
Plant Physiol. 2022 Jan 20;188(1):81-96. doi: 10.1093/plphys/kiab476.
5
Orientation-Dependent Reflection of Structurally Coloured Butterflies.
Biomimetics (Basel). 2020 Feb 3;5(1):5. doi: 10.3390/biomimetics5010005.
6
Bragg-mirror-like circular dichroism in bio-inspired quadruple-gyroid 4srs nanostructures.
Light Sci Appl. 2017 Jan 13;6(1):e16192. doi: 10.1038/lsa.2016.192. eCollection 2017 Jan.
7
Cuticle network and orientation preference of photonic crystals in the scales of the weevil .
J R Soc Interface. 2018 Aug;15(145). doi: 10.1098/rsif.2018.0360.
8
On the colour of wing scales in butterflies: iridescence and preferred orientation of single gyroid photonic crystals.
Interface Focus. 2017 Aug 6;7(4):20160154. doi: 10.1098/rsfs.2016.0154. Epub 2017 Jun 16.
10
Biomimetic self-cleaning surfaces: synthesis, mechanism and applications.
J R Soc Interface. 2016 Sep;13(122). doi: 10.1098/rsif.2016.0300.

本文引用的文献

1
Structure and development of iridescent butterfly scales: Lattices and laminae.
J Morphol. 1989 Oct;202(1):69-88. doi: 10.1002/jmor.1052020106.
2
Iridescence and spectral filtering of the gyroid-type photonic crystals in Parides sesostris wing scales.
Interface Focus. 2012 Oct 6;2(5):681-7. doi: 10.1098/rsfs.2011.0082. Epub 2011 Dec 21.
4
Brilliant camouflage: photonic crystals in the diamond weevil, Entimus imperialis.
Proc Biol Sci. 2012 Jul 7;279(1738):2524-30. doi: 10.1098/rspb.2011.2651. Epub 2012 Feb 29.
5
Hemispherical Brillouin zone imaging of a diamond-type biological photonic crystal.
J R Soc Interface. 2012 Jul 7;9(72):1609-14. doi: 10.1098/rsif.2011.0730. Epub 2011 Dec 21.
6
Helium ion microscopy of Lepidoptera scales.
Scanning. 2012 Mar-Apr;34(2):107-20. doi: 10.1002/sca.20267. Epub 2011 Jul 27.
7
Direct determination of the refractive index of natural multilayer systems.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 May;83(5 Pt 1):051917. doi: 10.1103/PhysRevE.83.051917. Epub 2011 May 18.
9
The chiral structure of porous chitin within the wing-scales of Callophrys rubi.
J Struct Biol. 2011 May;174(2):290-5. doi: 10.1016/j.jsb.2011.01.004. Epub 2011 Jan 25.
10
Light and color on the wing: structural colors in butterflies and moths.
Appl Opt. 1991 Aug 20;30(24):3492-500. doi: 10.1364/AO.30.003492.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验