Suppr超能文献

在稳定选择下基因座处的小群体遗传变异性

SMALL POPULATION GENETIC VARIABILITY AT LOCI UNDER STABILIZING SELECTION.

作者信息

Foley Patrick

机构信息

Department of Biological Sciences, California State University, Sacramento, CA, 95819, USA.

出版信息

Evolution. 1992 Jun;46(3):763-774. doi: 10.1111/j.1558-5646.1992.tb02082.x.

Abstract

Genetic variability at a locus under stabilizing selection in a finite population is investigated using analytic methods and computer simulations. Three measures are examined: the number of alleles k, heterozygosity H, and additive genetic variance Vg. A nearly-neutral theory results. The composite parameter S = NV /V (where N is the population size, V the variance of new mutant allelic effects and V the weakness of stabilizing selection) figures prominently in the results. The equilibrium heterozygosity is similar to that of strictly neutral theory, H = 4N / (1 + 4N ), except that μ = μe=μ/1+cS where c is about 0.5. Simulations corroborate Vg=4μVs1+1/S except for very low N. Genetic variability attains similar equilibrium values at both a "lone" locus and at an "embedded" locus. This agrees with my earlier work concerning molecular clock rates. These results modify the neutralist interpretation of data concerning genetic variability and genetic distances between populations. Low H values are proportional not to N but to N. This may explain the narrow observed range of H among species. Heterozygosities need not be highly correlated to genetic variances. Genetic variances are not highly dependent on population size except in very small populations which are difficult to sample without bias because the smallest populations go extinct the fastest. Nearly neutral evolution will not be easily distinguished from strictly neutral theory under the Hudson-Kreitman-Aguade inter-/intraspecific variation ratio test, since a similar effective mutation rate holds for genetic distances and D = 2μ t, where μe=μ/1+S. As with strictly neutral theory, comparisons across loci should show D and H to be positively correlated because of the shared μ . But unlike neutral theory, for a given locus, comparisons across species should show D and H to be negatively correlated. There is no obvious threshold of population size below which genetic variability inevitably declines. Extinction depends on both genetic variation and natural selection. Neither theory nor observation presently indicates the measure of genetic variability (k, H, V or other) that best indicates vulnerability of a small population to extinction.

摘要

利用解析方法和计算机模拟,研究了有限种群中处于稳定选择下的一个基因座的遗传变异性。研究了三个指标:等位基因数量k、杂合度H和加性遗传方差Vg。得出了一个近中性理论。复合参数S = NV /V(其中N是种群大小,V是新突变等位基因效应的方差,V是稳定选择的强度)在结果中显著出现。平衡杂合度与严格中性理论的相似,即H = 4N / (1 + 4N),只是μ = μe = μ / (1 + cS),其中c约为0.5。模拟结果证实,除了种群数量非常低的情况外,Vg = 4μVs / (1 + 1/S)。在“孤立”基因座和“嵌入”基因座上,遗传变异性都达到了相似的平衡值。这与我早期关于分子钟速率的研究结果一致。这些结果修正了对有关种群间遗传变异性和遗传距离数据的中性论解释。低H值与N不成比例,而是与N成比例。这可能解释了在物种间观察到的H值范围较窄的现象。杂合度与遗传方差不一定高度相关。遗传方差除了在非常小的种群中,对种群大小的依赖性不强,而这些小种群由于最小的种群灭绝最快,很难无偏差地进行抽样。在哈德逊 - 克雷特曼 - 阿瓜德种间/种内变异率测试下,近中性进化很难与严格中性理论区分开来,因为对于遗传距离,有效突变率相似,且D = 2μt,其中μe = μ / (1 + S)。与严格中性理论一样,由于共享μ,跨基因座比较应显示D和H呈正相关。但与中性理论不同的是,对于给定基因座,跨物种比较应显示D和H呈负相关。不存在明显的种群大小阈值,低于该阈值遗传变异性必然下降。灭绝取决于遗传变异和自然选择。目前理论和观察都没有表明哪种遗传变异性指标(k、H、V或其他)最能表明小种群灭绝的脆弱性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验