Tresoldi Claudia, Bianchi Elena, Pellegata Alessandro Filippo, Dubini Gabriele, Mantero Sara
a Department of Chemistry, Materials, and Chemical Engineering 'Giulio Natta' , Politecnico di Milano , Milan , Italy.
Comput Methods Biomech Biomed Engin. 2017 Aug;20(10):1077-1088. doi: 10.1080/10255842.2017.1332192. Epub 2017 Jun 1.
The in vitro replication of physiological mechanical conditioning through bioreactors plays a crucial role in the development of functional Small-Caliber Tissue-Engineered Blood Vessels. An in silico scaffold-specific model under pulsatile perfusion provided by a bioreactor was implemented using a fluid-structure interaction (FSI) approach for viscoelastic tubular scaffolds (e.g. decellularized swine arteries, DSA). Results of working pressures, circumferential deformations, and wall shear stress on DSA fell within the desired physiological range and indicated the ability of this model to correctly predict the mechanical conditioning acting on the cells-scaffold system. Consequently, the FSI model allowed us to a priori define the stimulation pattern, driving in vitro physiological maturation of scaffolds, especially with viscoelastic properties.
通过生物反应器进行生理机械调节的体外复制在功能性小口径组织工程血管的发育中起着至关重要的作用。使用流体结构相互作用(FSI)方法,针对粘弹性管状支架(如脱细胞猪动脉,DSA),实现了由生物反应器提供脉动灌注的计算机模拟支架特异性模型。DSA上的工作压力、周向变形和壁面剪应力结果落在所需的生理范围内,表明该模型能够正确预测作用于细胞-支架系统的机械调节。因此,FSI模型使我们能够事先定义刺激模式,推动支架的体外生理成熟,特别是对于具有粘弹性特性的支架。